Skip to main content
Log in

Characteristics of medium carbon steel solidification and mold flux crystallization using the multi-mold simulator

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

An oscillating multi-mold simulator with embedded thermocouples was used to study the initial solidification of medium carbon steels and crystallization characteristics of the mold flux. Casting speed variations in the simulator from 0.7 m/min to 1.4 m/min at fixed oscillation frequency and stroke resulted in higher copper mold temperatures. Frequency modifications from 2.5 Hz to 5.0 Hz and stroke changes from 8.1 mm to 5.4 mm at fixed casting speeds also resulted in higher copper mold temperatures. Surface profile analysis of as-cast steel strips showed characteristic oscillation marks comparable to the narrow faces of the industrial cast slabs. The apparent effect of casting variables on the temperature and surface profiles during the solidification of the medium carbon steels could be correlated to the variations in the negative strip time and subsequent changes in the extent of mold flux infiltration. Back scattered scanning electron microscope analysis of the full length of the retrieved flux film after casting showed cuspidine crystallization ratio that increased from the upper to lower portion of the flux film. This dynamic crystallization and growth of the cuspidine phase increases as the flux is sustained at high temperatures for longer periods. Additional experiments with industrial fluxes designed for soft cooling of medium carbon steel grades showed comparable infiltration thickness of the flux, but the crystallization characteristics were significantly different, which could have a significant impact on the heat transfer rate and mechanism through the flux film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kurz, La Metallurgia Italiana 99, 56 (2008).

    Google Scholar 

  2. A. Badri, T. T. Natarajan, C. C. Snyder, K. D. Powers, F. J. Mannion, and A. W. Cramb, Metall. Mat. Trans. B 36B, 373 (2005).

    Article  Google Scholar 

  3. I. Sohn, T. T. Natarajan, T. J. Piccone, K. D. Powers, and C. C. Snyder, European Continuous Casting Conference 2008, Riccione, Italy (2008).

    Google Scholar 

  4. G. Lesoult, J.-M. Jolivet, L. Cadeville, and Ch.-A. Gandin, Contributions to the Understanding of the Formation of the Skin during Continuous Casting of Steel, Solidification Processes and Microstructures, pp.15–26, TMS2004, USA (2004)

    Google Scholar 

  5. K. Schwerdtfeger and H. Sha, Metall. Mater. Trans. B 31B, 813 (2000).

    Article  Google Scholar 

  6. E. Takeuchi and J. K. Brimacombe, Metall. Mater. Trans. B 15B, 493 (1984).

    Article  Google Scholar 

  7. K. M. Park, J. H. Gu, S. M. Seo, H. W. Jeong, J. H. Shin, K. B. Sim, and J. H. Lee, Korean J. Met. Mater. 51, 211 (2013).

    Google Scholar 

  8. K.-H. Kim and C.-M. Bae, Met. Mater. Int. 19, 375 (2013).

    Google Scholar 

  9. E. S. Szekeres, Iron Steel Eng. 73, 29 (1996).

    Google Scholar 

  10. O. D. Kwon, J. Choi, I. R. Lee, J. W. Kim, K. H. Moon, and Y. K. Shin, Optimisation of Mould Oscillation Pattern for the Improvement of Surface Quality and Lubrication in Slab Continuous Casting, Proc. the 74th Steelmaking Conference, pp.561–568, Washington D.C., USA (1991).

    Google Scholar 

  11. K. Cukierski and B. G. Thomas, Metall. Mater. Trans. B 39B, 94 (2008).

    Article  Google Scholar 

  12. R. B. Mahapatra, J. K. Brimacombe, and I. V. Samarasekera, Metall. Mater. Trans. B 22B, 875 (1991).

    Article  Google Scholar 

  13. J. Sengupta, B. G Thomas, H.-J. Shin, G.-G. Lee, and S.-H. Kim, Metall. Mater. Trans. A 37A, 1597(2006).

    Article  Google Scholar 

  14. M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida, and Y. Komatsu, ISIJ Int. 31, 254 (1991).

    Article  Google Scholar 

  15. T. Gamal and U. Schoneberg, Stahlu. Eisen 112, 45 (1992).

    Google Scholar 

  16. K. C. Mills, A. B. Fox, Z. Li, and R. P. Thackray, Ironmak. Steelmak. 32, 26 (2005).

    Article  Google Scholar 

  17. H. Tomono, W. Kurz, W. Heinemann, Metall. Mater. Trans. B 12B, 409 (1981).

    Article  Google Scholar 

  18. M. Suzuki and Y. Yamaoka, Mater. Trans. JIM. 44, 836 (2003).

    Article  Google Scholar 

  19. M. Kudoh, T. Takahashi, and Y. Deguchi, Tetsu-to-Hagane 73, S901 (1987).

    Google Scholar 

  20. D. Bouchard, F. G. Hamel, J.-P Nadeau, S. Bellemare, F. Dreneau, D.-A. Tremblay, and D. Sirrard, Metall. Mater. Trans. B 32B, 111 (2001).

    Article  Google Scholar 

  21. L. Strezov and J. Herbertson, ISIJ Int. 38, 959 (1998).

    Article  Google Scholar 

  22. P. J. Wray, Metall. Mater. Trans. B 12B, 167 (1981).

    Article  Google Scholar 

  23. I. G. Saucedo, Proc. Steelmaking Conference, pp.79–89, Iron and Steel Society of AIME, 75, Washington D.C., USA (1991).

    Google Scholar 

  24. W. Wang, K. Gu, L. Zhon, F. Ma, I. Sohn, D. J. Min, H. Matsuura, and F. Tsukihashi, ISIJ Int. 51, 1838 (2011).

    Article  Google Scholar 

  25. E.-Y. Ko, C. Joo, J.-Y. Park, and I. Sohn, Met. Mater. Int. 20, 141 (2014).

    Article  Google Scholar 

  26. H. Zhang, W. Wang, and D. Zhou, Metall. Mater. Trans. B 45B, 1038 (2014).

    Article  Google Scholar 

  27. Y. Le Papillon, W. Jaeger, M. Konig, B. Weisgerber, and M. Jauhola, Determination of High Temperature Surface Crack Formation Criteria in Continuous Casting and Thin Slab Casting, pp.1–155, European Commission Technical Steel Research, EUR20897 (2003).

    Google Scholar 

  28. M. Bobadilla, J. M. Jolivet, J.Y. Lamant, and M. Larrecq, Mater. Sci. Eng. A 173 275 (1993).

    Article  Google Scholar 

  29. M. Hanao and M. Kawamoto, ISIJ Int. 48, 180 (2008).

    Article  Google Scholar 

  30. R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Sohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JY., Ko, Ey., Choi, J. et al. Characteristics of medium carbon steel solidification and mold flux crystallization using the multi-mold simulator. Met. Mater. Int. 20, 1103–1114 (2014). https://doi.org/10.1007/s12540-014-6013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-6013-7

Keywords

Navigation