Skip to main content
Log in

Microstructure formation mechanism and properties of AZ61 alloy processed by melt treatment with vibrating cooling slope and semisolid rolling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A melt treatment with a vibrating cooling slope and a semisolid rolling process to produce an AZ61 alloy strip was proposed. The microstructure formation mechanism and the properties of the AZ61 alloy produced by the proposed process were investigated. Due to the high cooling rate and stirring action caused by the vibration cooling slope, the nucleation rate was greatly improved, which caused the formation of fine spherical or rosette primary grains. During the rolling process, the solid fraction increased from the entrance to the exit of the roll gap, and under the shearing action of the roller, the distribution of solute in the melt was homogenous, and the primary grains grew further. When the casting temperature was 680 °C, a strip with a cross section of 4 mm×160 mm was produced and a homogeneous microstructure was obtained. The ultimate tensile strength of the AZ61 alloy strip produced by the proposed method reached 242 MPa, and the corresponding elongation to failure was 4%, which were better than those achieved in previous similar studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851 (2008).

    Article  Google Scholar 

  2. J. L. Kuo, S. Sugiyama, S. H. Hsiang, and J. Yanagimoto, Int. J. Adv. Manuf. Technol. 29, 670 (2006).

    Article  Google Scholar 

  3. M. C. Flemings, Metall. Trans. A 22, 957 (1991).

    Article  Google Scholar 

  4. R. A. Martinez and M. C. Flemings, Metall. Mater. Trans. A 36, 2205 (2005).

    Article  Google Scholar 

  5. D. Brabazon, D. J. Browne, and A. J. Carr, Mater. Sci. Eng. A 326, 370 (2002).

    Article  Google Scholar 

  6. M. A. Jaworski, T. K. Gray, M. Antonelli, J. J. Kim, C. Y. Lau, M. B. Lee, M. J. Neumann, W. Xu, and D. N. Ruzic, Phys. Rev. Lett. 104, 1 (2010).

    Article  Google Scholar 

  7. R. Haghayeghia, E. J. Zoquib, N. R. Greenc, and H. Bahaia, J. Alloys Compd. 502, 382 (2010).

    Article  Google Scholar 

  8. S. Thanabumrungkul, S. Janudom, R. Burapa, P. Dulyapraphant, and J. Wannasin, Trans. Nonferr. Met. Soc. China s3, 1016 (2010).

    Article  Google Scholar 

  9. J. F. Jiang, Y. Wang, J. J. Qu, Z. M. Du, Y. Sun, and S. J. Luo, J. Alloys Compd. 497, 62 (2010).

    Article  CAS  Google Scholar 

  10. J. F. Jiang, Y. Wang, J. J. Qu, Z. M. Du, and S. J. Luo, Trans. Nonferr. Met. Soc. China 20, 1731 (2010).

    Article  CAS  Google Scholar 

  11. E. C. Legoretta, H. V. Atkinson, and H. Jones, J. Mater. Sci. 43, 5448 (2008).

    Article  Google Scholar 

  12. R. G. Guan, Z. H. Xing, L. Shi, C. Wang, and Y. Wang, Mater. Sci. Forum 561-565, 865 (2007).

    Article  CAS  Google Scholar 

  13. T. Haga, J. Mater. Process Technol. 130–131, 558 (2002).

    Article  Google Scholar 

  14. E. C. Legoretta, H. V. Atkinson, and H. Jones, J. Mater. Sci. 43, 5456 (2008).

    Article  CAS  Google Scholar 

  15. A. El-Morsy, A. Ismail, and M. Waly, Mater. Sci. Eng. A 486, 528 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Guo Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z.Y., Guan, R.G., Wang, X. et al. Microstructure formation mechanism and properties of AZ61 alloy processed by melt treatment with vibrating cooling slope and semisolid rolling. Met. Mater. Int. 19, 1063–1067 (2013). https://doi.org/10.1007/s12540-013-5022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5022-2

Key words

Navigation