Skip to main content
Log in

Effect of roll speed ratio on deformation characteristics of IF steel subjected to differential speed rolling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The paper investigates the effect of the roll speed ratio on the deformation characteristics of interstitial free (IF) steel processed by the differential speed rolling (DSR) technique. An intense plastic strain induced by a single DSR with various roll speed ratios ranging from 1:1 to 1:4 for the lower and upper rolls was successfully imparted to the samples, resulting in the formation of fine elongated ferrite grains as the roll speed ratio increased. Observations of the preferred orientation using electron back-scattered diffraction and transmission electron microscopy revealed that the {110} slip was readily activated as the dominant deformation mode in order to accommodate the intense plastic strain imposed by the DSR. In addition, the microhardness values of the IF steel sample deformed via DSR under a roll speed ratio of 1:4 increased, and this is discussed on basis of the frictional force between the roll and the sample during DSR deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Cho and S. I. Hong, Met. Mater. Int. 18, 355 (2012).

    Article  CAS  Google Scholar 

  2. S. H. Lee and C. S. Kang, Korean J. Met. Mater, 49, 893 (2011).

    CAS  Google Scholar 

  3. B. H. Cheon, J. H. Han, H. W. Kim, and J. C. Lee, Korean J. Met. Mater, 49, 243 (2011).

    Article  CAS  Google Scholar 

  4. S. B. Kang, B. K. Min, H. W. Kim, D. S. Wilkinson, and J. Kang, Metall. Mater. Trans. A, 36, 3141 (2005).

    Article  Google Scholar 

  5. W. J. Kim, M. J. Kim, and J. Y. Wang, Mater. Sci. Eng. A 516, 17 (2009).

    Article  Google Scholar 

  6. J. Jiang, Y. Ding, F. Zuo, and A. Shan, Scripta Mater. 60, 905 (2009).

    Article  CAS  Google Scholar 

  7. R. Lapovok, L. S. Tóth, M. Winkler, and S. L. Semiatin, J. Mater. Res. 24, 459 (2009).

    Article  CAS  Google Scholar 

  8. L. L. Chang, J. H. Cho, and S. K. Kang, Mater. Design 34, 746 (2012).

    Article  CAS  Google Scholar 

  9. X. Huang, K. Suzuki, and N. Saito, Mater. Sci. Eng. A 508, 226 (2009).

    Article  Google Scholar 

  10. T. Ueno, H. Utsunomiya, and T. Sakai, Steel Res. Int. 79, 168 (2008).

    Google Scholar 

  11. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito, Scripta Mater. 60, 964 (2009).

    Article  CAS  Google Scholar 

  12. Y. B. Pyon, K. M. Lee, M. Y. Huh, and O. Engler, Int. Mater. Res. 101, 1029 (2010).

    Article  CAS  Google Scholar 

  13. W. J. Kim, S. J. Yoo, H. T. Jeong, D. M. Kim, B. H. Choe, and J. B. Lee, Scripta Mater. 64, 49 (2011).

    Article  CAS  Google Scholar 

  14. W. J. Kim, B. G. Hwang, M. J. Lee, and Y. B. Park, J. Alloys Compd. 509, 8510 (2011).

    Article  CAS  Google Scholar 

  15. A. Wauthier, H. Réglé, J. Formigoni, and G. Herman, Mater. Charac. 60, 90 (2009).

    Article  CAS  Google Scholar 

  16. Q. Cui and K. Ohori, Mater. Sci. Technol. 16, 1095 (2000).

    CAS  Google Scholar 

  17. Y. Saito, T. Sakai, F. Maeda, and K. Kato, J. Iron Steel Inst. Japan 72, 799 (1986).

    CAS  Google Scholar 

  18. B. L. Li, A. Godfrey, Q. C. Meng, Q. Liu, N. Hansen, Acta Mater. 52, 1069 (2004).

    Article  CAS  Google Scholar 

  19. D. N. Lee, Texture and Related Phenomena, pp.472–490, Kor. Inst. Metal. Mater., Seoul (2006).

    Google Scholar 

  20. J. Y. Kang, B. Bacroix, H. Réglé, K.H. Oh, and H. C. Lee, Acta Mater. 55, 4935 (2007).

    Article  CAS  Google Scholar 

  21. Y. Ding, J. Jiang, and A. Shan, Mater. Sci. Eng. A 509, 76 (2009).

    Article  Google Scholar 

  22. T. Sakai, Y. Saito, M. Matsuo, and K. Kawasaki, J. Iron Steel Inst. Japan 31, 86 (1991).

    Article  CAS  Google Scholar 

  23. P. Zhang, Y. H. Guo, Z. D. Wang, G. D. Wang, and X. H. Liu, J. Iron Steel Res. 17, 44 (2010).

    Google Scholar 

  24. B. Q. Han, E. J. Lavernia, and F. A. Mohamed, Metall. Mater. Trans. A 34, 71 (2003).

    Article  Google Scholar 

  25. J. H. Cho, H. W. Kim, S. B. Kang, and T. S. Han, Acta Mater. 59, 5638 (2011).

    Article  CAS  Google Scholar 

  26. Y. M. Wang and E. Ma, Mater. Sci. Eng. A 375, 46 (2004).

    Article  Google Scholar 

  27. H. Huh, J. H. Yoon, C. G. Park, J. S. Kang, M. Y. Huh, and H. G. Kang, Int. J. Mech. Sci. 52, 745 (2010).

    Article  Google Scholar 

  28. P. P. Gudur, M. A. Salunkhe, and U. S. Dixit, Int. J. Mech. Sci. 50, 315 (2008).

    Article  Google Scholar 

  29. C. McConnell and J. G. Lenard, J. Mater. Process. Technol. 99, 86 (2000).

    Article  Google Scholar 

  30. D. Pan and D.H. Sansome, J. Mech. Work. Technol. 6, 361 (1982).

    Article  Google Scholar 

  31. Y. M. Hwang and G. Y. Tzou, Int. J. Mech. Sci. 39, 289 (1997).

    Article  Google Scholar 

  32. G. Y. Tzou, J. Mater. Process. Technol. 86, 271 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, Y.G., Suharto, J., Lee, J.S. et al. Effect of roll speed ratio on deformation characteristics of IF steel subjected to differential speed rolling. Met. Mater. Int. 19, 603–609 (2013). https://doi.org/10.1007/s12540-013-3033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-3033-7

Key words

Navigation