Skip to main content
Log in

A galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structures: Laboratory tests to determine the cathodic protection and stray-current

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In order to evaluate the possible application of a galvanic sensor for cathodic protection (CP) and straycurrent monitoring of steel embedded in concrete structures, the correlation of sensor current to protection abilities (protection potential/current) and stray-current was investigated by galvanostatic tests that simulated the CP and stray-current. The results revealed a good correlation between the sensor current and the protection abilities or stray-current in terms of the sign as well as magnitude. Thus, the galvanic sensor is proposed as an effective tool for the quantitative determination of the effectiveness of CP or of the interference effect of stray-current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bentur, S. Diamond, and N. S. Berke, Steel Corrosion in Concrete, p. 24–58, E & FN Spon, London (1997).

    Google Scholar 

  2. J. Gulikers, Constr. Build. Mater. 11, 143 (1997).

    Article  Google Scholar 

  3. J. P. Broomfield, Corrosion of Steel in Concrete, p. 16–29, E & FN Spon, London (1997).

    Book  Google Scholar 

  4. M. Moreno, W. Morris, M. G. Alvarez, and G. S. Duffó, Corros. Sci. 46, 2681 (2004).

    Article  CAS  Google Scholar 

  5. C. Arya and P. R. W. Vassie, Cem. Concr. Res. 25, 989 (1995).

    Article  CAS  Google Scholar 

  6. R. A. Barnhart, FHWA Position on Cathodic Protection System, FHWA, Washington DC (1982).

    Google Scholar 

  7. G. K. Glass, A. M. Hassanein, and N. R. Buenfeld, Corros. Sci. 43, 1111 (2001).

    Article  CAS  Google Scholar 

  8. O. Chaix, W. H. Hartt, R. Kessler, and R. Powers, Corrosion 51, 386 (1995).

    Article  CAS  Google Scholar 

  9. D. G. Enos, A. J. Williams Jr., and J. R. Scully, Corrosion 53, 891 (1997).

    Article  CAS  Google Scholar 

  10. D. G. Enos, A. J. Williams Jr., G. G. Clemena, and J. R. Scully, Corrosion 54, 389 (1998).

    Article  CAS  Google Scholar 

  11. S. J. Kim, S. K. Jang, and J. I. Kim, Met. Mater. Int. 11, 63 (2005).

    Article  CAS  Google Scholar 

  12. P. Pedeferri, Constr. Build. Mater. 10, 391 (1996).

    Article  Google Scholar 

  13. K. Takewaka, Corros. Sci. 35, 1617 (1993).

    Article  CAS  Google Scholar 

  14. J. J. Chang, Cem. Concr. Res. 32, 657 (2002).

    Article  CAS  Google Scholar 

  15. L. Bertolini, M. Carsana, and P. Pedeferri, Corros. Sci. 49, 1056 (2007).

    Article  CAS  Google Scholar 

  16. Y. S. Kim, G. J. Jeong, and H. J. Sohn, Met. Mater. Int. 5, 93 (1999).

    CAS  Google Scholar 

  17. B. Bazzoni, M. C. Briglia, G. Cavallero, D. Melodia, and F. Panaro, Proc. Corrosion/99, Paper No. 560, NACE, Houston (1999).

    Google Scholar 

  18. A. W. Peabody, Control of Pipeline Corrosion, 2 nd ed., p. 211–236, NACE International, Houston (2001).

    Google Scholar 

  19. V. S. Agarwala, Proc. Corrosion/96, Paper No. 632, NACE, Houston (1996).

    Google Scholar 

  20. T. J. Garosshen and T. K. Mukherji, Proc. Corrosion/2000, Paper No. 266, NACE, Houston (2000).

    Google Scholar 

  21. J. H. Yoo, Z. T. Park, J. G. Kim, and L. Chung, Cem. Concr. Res. 33, 2057 (2003).

    Article  CAS  Google Scholar 

  22. Z. T. Park, Y. S. Choi, J. G. Kim, and L. Chung, Cem. Concr. Res. 35, 1814 (2005).

    Article  CAS  Google Scholar 

  23. J. H. Yoo, Z. T. Park, J. G. Kim, and L. Chung, J. Kor. Inst. Met. & Mater. 41, 489 (2003).

    CAS  Google Scholar 

  24. Y. S. Choi, Z. T. Park, and J. G. Kim, J. Kor. Inst. Met. & Mater. 43, 31 (2005).

    CAS  Google Scholar 

  25. D. A. Jones, Principles and Prevention of Corrosion, 2 nd ed., p. 80–84, Prentice-Hall, New Jersey (1996).

    Google Scholar 

  26. P. R. Roberge, Handbook of Corrosion Engineering, p. 32–54, McGraw-Hill, New York (2000).

    Google Scholar 

  27. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., p. 123–127, Prentice-Hall, New Jersey (1996).

    Google Scholar 

  28. M. Funahashi and J. B. Bushman, Corrosion 47, 376 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Gu Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, YH., Nam, TH., Choi, YS. et al. A galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structures: Laboratory tests to determine the cathodic protection and stray-current. Met. Mater. Int. 17, 623–629 (2011). https://doi.org/10.1007/s12540-011-0816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-011-0816-6

Keywords

Navigation