Skip to main content
Log in

Sintering and dissolution of bone ash-derived hydroxyapatite

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Bone ash-derived hydroxyapatite (HA) ceramics were prepared by pressureless sintering and hot pressing, and their dissolution behavior was examined in buffered water. HA powder was obtained by soaking bone ash in a 0.1M NaOH solution at 80 °C, followed by calcination at 1000 °C to completely remove the organic material. The crystal structure of the HA powder with a particle size of approximately 1 μm was mainly hydroxyapatite with a minimal amount of α-tricalcium phosphate. To improve densification, the powder was hot-pressed at 1000 °C for 0.5 h under a pressure of 30 MPa in an Ar atmosphere. The sintered density of the hot-pressed HA was 95 % of the theoretical density, which is much higher than the 70% obtained for the pressureless-sintered compact. In the porous HA ceramics obtained by pressureless sintering, dissolution occurred adjacent to the pores rather than in the dense part, which increased the residual porosity. On the other hand, the hot-pressed HA showed grain boundary dissolution followed by particle loosening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Aoki, Science and Medical Applications of Hydroxyapatite, Japanese Association of Apatite Science, Japan (1991).

    Google Scholar 

  2. W. Suchanek and M. Yoshimura, J. Mater. Res. 13, 94 (1998).

    Article  CAS  ADS  Google Scholar 

  3. G. S. Johnson, M. R. Mucalo, and M. A. Lorier, J. Mater. Sci. Mater. Med. 11, 427 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. K. Haberko, M. M. Bucko, J. B. Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda, and J. Zarebski, J. Eur. Ceram. Soc. 26, 537 (2006).

    Article  CAS  Google Scholar 

  5. D. Tadic and M. Epple, Biomaterials 25, 987 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Y. S. Kim, J. E. Kim, J. H. You, and H. T. Kim, J. Kor. Ceram. Soc. 41, 921 (2004).

    Article  CAS  Google Scholar 

  7. C. Y. Ooi, M. Hamdi, and S. Ramesh, Ceram. Int. 33, 1171 (2007).

    Article  CAS  Google Scholar 

  8. R. Murugan, S. Ramakrishna, and K. P. Rao, Mater. Lett. 60, 2844 (2006).

    Article  CAS  Google Scholar 

  9. C. K. Lee, J. S. Choi, Y. J. Jeon, H. G. Byun, and S. K. Kim, J. Kor. Fish Soc. 30, 652 (1997).

    CAS  Google Scholar 

  10. M. R. Mucalo, D. L. Foster, B. Wielage, S. Steinhaeuser, H. Mucha, D. Knighton, and J. Kirby, J. Appl. Biomater. Biomech. 2, 96 (2004).

    CAS  PubMed  Google Scholar 

  11. S. J. Lee, Y. S. Yoon, M. H. Lee, and N. S. Oh, Mater. Lett. 61, 1279 (2007).

    Article  CAS  Google Scholar 

  12. C. J. Liao, F. H. Lin, K. S. Chen, and J. S. Sun, Biomaterials 20, 1807 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. D. S. Seo and J. K. Lee, Met. Mater. Int. 15, 265 (2009).

    Article  CAS  Google Scholar 

  14. A. Royer, J. C. Viguie, M. Heughebaert, and J. C. Heughebaert, J. Mater. Sci. Mater. Med. 4, 76 (1993).

    Article  CAS  Google Scholar 

  15. S. Nakamura, R. Otsuka, H. Oaki, M. Akao, N. Miura, and T. Yamamoto, Thermochim. Acta 165, 57 (1990).

    Article  CAS  Google Scholar 

  16. C. V. Paganelli, A. H. Rahn, and O. D. Wangensteen, Respir. Physiol. 25, 247 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. S. Raynaud, E. Champion, D. Bernache-Assolant, and D. Tetard, J. Mater. Sci. Mater. Med. 9, 221 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. G. Daculsi, R. Z. LeGeros, and D. Mitre, Calcif. Tissue Int. 45, 95 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. S. Wen and Q. Liu, Microsc. Res. Tech. 40, 177 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. A. E. Porter, S. M. Best, and W. Bonfield, Key Eng. Mater. 240–242, 505 (2003).

    Article  Google Scholar 

  21. T. Nonami, and F. J. Wakai, J. Ceram. Soc. Jpn. 103, 648 (1995).

    CAS  Google Scholar 

  22. D. S. Seo, H. Kim, and J. K. Lee, Solid State Phenomena 121–123, 1241 (2007).

    Article  Google Scholar 

  23. E. H. Kim, Y. C. Kim, S. H. Han, S. J. Yang, J. W. Park, and H. K. Seok, J. Kor. Inst. Met. & Mater. 47, 13 (2009).

    CAS  Google Scholar 

  24. G. Georgiou, J. C. Knowles, J. E. Barralet, Y. M. Kong, and H. E. Kim, J. Mater. Sci. Mater. Med. 15, 705 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. National Prion Diseases Pathology Center, http://www.cjdsurveillance.com (2009).

  26. G. Göller, F. N. Oktar, L. S. Ozyegin, E. S. Kayali, and E. Demirkesen, Mater. Lett. 58, 2599 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Kook Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, D.S., Kim, Y.G. & Lee, J.K. Sintering and dissolution of bone ash-derived hydroxyapatite. Met. Mater. Int. 16, 687–692 (2010). https://doi.org/10.1007/s12540-010-0825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-0825-x

Keywords

Navigation