Skip to main content
Log in

Effects of temperature and catalysts on the synthesis of carbon nanotubes by chemical vapor deposition

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Carbon nanotubes were produced on a quartz plate and a silicon wafer by chemical vapor deposition using xylene as a carbon resource, iron and cobalt as catalysts, and ammonia as a reactive gas. A series of experiments was carried out to investigate the effects of reaction temperature, substrates, and catalysts on the synthesis of the nanotubes. The TEM analyses revealed that the nanotubes had a typical bamboo-shaped inner layer structure. Ammonia gas was found to have played a very important role in producing such bamboo-shaped CNTs by easing the formation of the graphite layers due to the catalyst activator and amorphous carbon reducer. The growth of CNTs was affected by the thickness of the silicon oxide layer. With iron catalysts, the growth of CNTs increased with an increase in the thickness of the silicon oxide layer. However, an opposite phenomenon occurred with the use of cobalt catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  ADS  Google Scholar 

  2. C. Journet, W. K. Master, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, and R. Lee, J. E. Fischer, Nature 388, 756 (1997).

    Article  CAS  ADS  Google Scholar 

  3. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Scuseria, D. Tomanek, J. E. Fisher, and R. E. Smalley, Science 273, 483 (1996).

    Article  CAS  ADS  PubMed  Google Scholar 

  4. A. Gohier, C. P. Ewels, T. M. Minea, and M. A. Djouadi, Carbon 46, 1331 (2008).

    Article  CAS  Google Scholar 

  5. I. K. Song, Y. S. Cho, G. S. Choi, J. B. Park, and D. J. Kim, Diam. Relat. Mater. 13, 1210 (2004).

    Article  CAS  Google Scholar 

  6. C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Appl. Phys. Lett. 77, 2767 (2000).

    Article  CAS  ADS  Google Scholar 

  7. Z. Y. Juang, I. P. Chien, J. F. Lai, T. S. Lai, and C. H. Tsai, Diam. Relat. Mater. 13, 1203 (2004).

    Article  CAS  Google Scholar 

  8. M. Jung, K. Y. Eun, Y. J. Baik, K. R. Lee, J. K. Shin, and S. T. Kim, Thin Solid Films 398–399 150 (2001).

    Article  Google Scholar 

  9. X. Ma, E. Wang, D. A. Jefferson, J. Chen, S. Deng, N. Xu, and J. Yuan, Appl. Phys. Lett. 75, 3105 (1999).

    Article  CAS  ADS  Google Scholar 

  10. C. H. Lin, H. L. Chang, C. M. Hsu, A. Y. Lo, and C. T. Kuo, Diam. Relat. Mater. 12, 1851 (2003).

    Article  CAS  Google Scholar 

  11. L. Yuan, T. Li, and K. Saito, Carbon 41, 2003 (1889).

    Google Scholar 

  12. C. J. Lee and J. Park, Appl. Phys. Lett. 77, 3397 (2000).

    Article  CAS  ADS  Google Scholar 

  13. G. Y. Zhang, X. C. Ma, D. Y. Zhong, and E. G. Wang, J. Appl. Phys. 91, 9324 (2002).

    Article  CAS  ADS  Google Scholar 

  14. C. J. Lee, J. H. Park, and J. Park, Chem. Phys. Lett. 323, 560 (2000).

    Article  CAS  ADS  Google Scholar 

  15. Y. J. Jung, B. Wei, R. Vajtai, P. M. Ajayan, Y. Homma, K. Prabhakaran, and T. Orino, Nano Lett. 3, 561 (2003).

    Article  CAS  ADS  Google Scholar 

  16. A. Cao, P. M. Ajayan, G. Ramanath, R. Baskaran, and K. Turnar, App. Phy. Lett. 84, 109 (2004).

    Article  CAS  ADS  Google Scholar 

  17. J. M. Ting and S. H. Lin, Carbon 45, 1934 (2007).

    Article  CAS  Google Scholar 

  18. H. Zhang, Y. Chen, S. S. Kim, and Y. S. Lim, Met. Mater. Int. 14, 269 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Soo Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, O., Jung, J., Doo, S. et al. Effects of temperature and catalysts on the synthesis of carbon nanotubes by chemical vapor deposition. Met. Mater. Int. 16, 663–667 (2010). https://doi.org/10.1007/s12540-010-0822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-0822-0

Keywords

Navigation