Skip to main content
Log in

Effect of calcination temperature and atmosphere on crystal structure of BaTiO3 nanofibers

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Barium titanate (BaTiO3, BT) nanofibers with a diameter range of 160 nm to 300 nm were prepared by drying electrospun BT/polyvinylpyrrolidone (BT/PVP) composite fibers for 1 h at 80 °C in vacuum with a subsequent calcination in air for 1 h at a temperature range of 650 °C to 750 °C. The morphology and crystal structure of calcined BT nanofibers were characterized with the aid of XRD, FT-IR, SEM, and TEM. The XRD and FR-IR measurements confirm that BT nanofibers with a diameter of about 160 nm and a tetragonal perovskite structure were present in the electrospun fibers after calcination for 1 h at 750 °C. The FR-IR analysis of the BT fibers reveals that the intensity level of the O-H stretching vibration bands (at 3430 cm−1 and 1425 cm−1) become weaker as the calcination temperature is increased and that a broad band at 570 cm−1, which represents the Ti-O vibration, appears sharper and narrower after calcination at 750 °C due to the formation of metal oxide bonds. In contrast, BT fibers prepared by a refluxing process in a nitrogen atmosphere show a dramatic change in crystal structure: the tetragonal structure changes to a cubic perovskite structure, probably due to the suppression of carbonate contamination. Thus, the calcination temperature and atmosphere appear to have a significant influence on the crystal structure of BT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yuh, J.C. Nino, and W.M. Sigmund, Mater. Lett. 59, 3645 (2005).

    Article  CAS  Google Scholar 

  2. J. Yuh, L. Perez, W.M. Sigmund, and J.C. Nino, Physica E 37, 254 (2007).

    Article  CAS  Google Scholar 

  3. J.T. McCann, J.I.L. Chen, D. Li, Z. Ye, and Y. Xia, Chem. Phys. Lett. 424, 162 (2006).

    Article  CAS  Google Scholar 

  4. H. Kozuka and A. Higuchi, J. Mater. Res. 16, 3116 (2001).

    Article  CAS  Google Scholar 

  5. M. Nikiforov, H. Liu, H. Craighead, and D. Bonnell, Nano Lett. 6, 896 (2006).

    Article  CAS  Google Scholar 

  6. M. Kim, S. Jeon, S. Jeong, I. Kim, J. Song, Electron. Mater. Lett. 4, 189 (2008).

    CAS  Google Scholar 

  7. D. Y. Lee, B. Kim, S. Lee, M. Lee, Y. Song, and J. Lee, J. Kor. Phys. Soc. 48, 1686 (2006).

    CAS  Google Scholar 

  8. Y. Kim, D. Y. Lee, M. Lee, N. Cho, S. Lee, and Y. Song, J. Kor. Phys. Soc. 53, 421 (2008).

    CAS  Google Scholar 

  9. D.Y. Lee, J. Cho, N. Cho, M. Lee, S. Lee, and B. Kim, Thin Solid Films 517, 1256 (2008).

    Google Scholar 

  10. S. Moon and N. Cho, Met. Mater. Int. 13, 329 (2007).

    Article  CAS  Google Scholar 

  11. S. Lee, N. Cho, and D.Y. Lee, J. Euro. Ceram. Soc. 27, 3651 (2007).

    Article  CAS  Google Scholar 

  12. S. Bae, S. Lee, S. Cho, and D.Y. Lee, J. Kor. Ceram. Soc. 41, 247 (2004).

    Article  CAS  Google Scholar 

  13. D.Y. Lee, I. Park, M. Lee, K.J. Kim, and S. Heo, Sens. Actuators A 133, 117 (2007).

    Article  Google Scholar 

  14. D. Y. Lee, S. Lee, M. Lee, J. Lee, B. Kim, Y. Song, and N. Cho, Mater. Sci. Eng. C 28, 294 (2008).

    Article  CAS  Google Scholar 

  15. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Phys. Fluids 13, 2201 (2001).

    Article  CAS  Google Scholar 

  16. H. Fong, I. Chun, and D. H. Reneker, Polymer 40, 4585 (1999).

    Article  CAS  Google Scholar 

  17. S. Maensiri, W. Nuansing, J. Klinkaewnarong, P. Laokul, and J. Khemprasit, J. Colloid Interf. Sci. 297, 578 (2006).

    Article  CAS  Google Scholar 

  18. J. Yuh, L. Perez, W. M. Sigmund, and J. C. Nino, J. Sol-Gel Sci. Techn. 42, 323 (2007).

    Article  CAS  Google Scholar 

  19. S. Agarwal and G. L. Sharma, Sensor. Actuat. B-Chem. 85, 205 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deuk Yong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.Y., Lee, MH., Cho, NI. et al. Effect of calcination temperature and atmosphere on crystal structure of BaTiO3 nanofibers. Met. Mater. Int. 16, 453–457 (2010). https://doi.org/10.1007/s12540-010-0616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-0616-4

Keywords

Navigation