Skip to main content
Log in

Differential Network Analysis Reveals Regulatory Patterns in Neural Stem Cell Fate Decision

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Deciphering regulatory patterns of neural stem cell (NSC) differentiation with multiple stages is essential to understand NSC differentiation mechanisms. Recent single-cell transcriptome datasets became available at individual differentiation. However, a systematic and integrative analysis of multiple datasets at multiple temporal stages of NSC differentiation is lacking. In this study, we propose a new method integrating prior information to construct three gene regulatory networks at pair-wise stages of transcriptome and apply this method to investigate five NSC differentiation paths on four different single-cell transcriptome datasets. By constructing gene regulatory networks for each path, we delineate their regulatory patterns via differential topology and network diffusion analyses. We find 12 common differentially expressed genes among the five NSC differentiation paths, with one common regulatory pattern (Gsk3b_App_Cdk5) shared by all paths. The identified regulatory pattern, partly supported by previous experimental evidence, is essential to all differentiation paths, but it plays a different role in each path when regulating other genes. Together, our integrative analysis provides both common and specific regulatory mechanisms for each of the five NSC differentiation paths.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schwartz PH, Brick DJ, Stover AE, Loring JF, Muller FJ (2008) Differentiation of neural lineage cells from human pluripotent stem cells. Methods 45(2):142–158. https://doi.org/10.1016/j.ymeth.2008.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. English D, Sanberg PR (2006) Neural specification of stem cell differentiation. Stem Cells Dev 15(2):139–140. https://doi.org/10.1089/scd.2006.15.139

    Article  CAS  PubMed  Google Scholar 

  3. Qiao SP, Liu Y, Han FT, Guo M, Hou XL, Ye KR, Deng S, Shen YJ, Zhao YF, Wei HY, Song B, Yao LF, Tian WM (2018) An intelligent neural stem cell delivery system for neurodegenerative diseases treatment. Adv Healthc Mater. https://doi.org/10.1002/adhm.201800080

    Article  PubMed  Google Scholar 

  4. Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-seq by multiplexed linear amplification. Cell Reports 2(3):666–673. https://doi.org/10.1016/j.celrep.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  5. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10(11):1096–1098. https://doi.org/10.1038/NMETH.2639

    Article  CAS  PubMed  Google Scholar 

  6. Pina C, Teles J, Fugazza C, May G, Wang D, Guo Y, Soneji S, Brown J, Eden P, Ohlsson M, Peterson C, Enver T (2015) Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis. Cell Rep 11(10):1503–1510. https://doi.org/10.1016/j.celrep.2015.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu Y, Hase T, Li HP, Prabhakar S, Kitano H, Ng SK, Ghosh S, Wee LJ (2016) A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data. BMC Genomics 17(Suppl 13):1025. https://doi.org/10.1186/s12864-016-3317-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kee N, Volakakis N, Kirkeby A, Dahl L, Storvall H, Nolbrant S, Lahti L, Bjorklund AK, Gillberg L, Joodmardi E, Sandberg R, Parmar M, Perlmann T (2017) Single-cell analysis reveals a close relationship between differentiating dopamine and subthalamic nucleus neuronal lineages. Cell Stem Cell 20(1):29–40. https://doi.org/10.1016/j.stem.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  9. MacLean AL, Hong T, Nie Q (2018) Exploring intermediate cell states through the lens of single cells. Curr Opin Syst Biol 9:32–41. https://doi.org/10.1016/j.coisb.2018.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rostom R, Svensson V, Teichmann SA, Kar G (2017) Computational approaches for interpreting scRNA-seq data. Febs Lett 591(15):2213–2225. https://doi.org/10.1002/1873-3468.12684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang FC, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu NL, Wang XH, Bodeau J, Tuch BB, Siddiqui A, Lao KQ, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377-U386. https://doi.org/10.1038/nmeth.1315

    Article  CAS  PubMed  Google Scholar 

  13. Dulken BW, Leeman DS, Boutet SC, Hebestreit K, Brunet A (2017) Single-cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. Cell Rep 18(3):777–790. https://doi.org/10.1016/j.celrep.2016.12.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zurauskiene J, Yau C (2016) pcaReduce: hierarchical clustering of single cell transcriptional profiles. BMC Bioinform. https://doi.org/10.1186/s12859-016-0984-y

    Article  Google Scholar 

  15. Arendt D, Bertucci PY, Achim K, Musser JM (2019) Evolution of neuronal types and families. Curr Opin Neurobiol 56:144–152. https://doi.org/10.1016/j.conb.2019.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang X, Gao L, Zhang S (2017) Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns. Brief Bioinform 18(5):761–773. https://doi.org/10.1093/bib/bbw063

    Article  CAS  PubMed  Google Scholar 

  17. de la Fuente A (2010) From “differential expression” to “differential networking” - identification of dysfunctional regulatory networks in diseases. Trends Genet 26(7):326–333. https://doi.org/10.1016/j.tig.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  18. West J, Bianconi G, Severini S, Teschendorff AE (2012) Differential network entropy reveals cancer system hallmarks. Sci Rep 2:802. https://doi.org/10.1038/srep00802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lichtblau Y, Zimmermann K, Haldemann B, Lenze D, Hummel M, Leser U (2017) Comparative assessment of differential network analysis methods. Brief Bioinform 18(5):837–850. https://doi.org/10.1093/bib/bbw061

    Article  CAS  PubMed  Google Scholar 

  20. de Matos SR, Emmert-Streib F (2012) Bagging statistical network inference from large-scale gene expression data. PLoS ONE 7(3):e33624. https://doi.org/10.1371/journal.pone.0033624

    Article  CAS  Google Scholar 

  21. Moerman T, Aibar Santos S, Bravo Gonzalez-Blas C, Simm J, Moreau Y, Aerts J, Aerts S (2019) GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35(12):2159–2161. https://doi.org/10.1093/bioinformatics/bty916

    Article  CAS  PubMed  Google Scholar 

  22. Liu H, Li P, Zhu M, Wang X, Lu J, Yu T (2016) Nonlinear network reconstruction from gene expression data using marginal dependencies measured by DCOL. PLoS ONE 11(7):e0158247. https://doi.org/10.1371/journal.pone.0158247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16(3):133–145. https://doi.org/10.1038/nrg3833

    Article  CAS  PubMed  Google Scholar 

  24. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, Borm LE, Stott SRW, Toledo EM, Villaescusa JC, Lonnerberg P, Ryge J, Barker RA, Arenas E, Linnarsson S (2016) Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167(2):566–580. https://doi.org/10.1016/j.cell.2016.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, Levi B, Gray LT, Sorensen SA, Dolbeare T, Bertagnolli D, Goldy J, Shapovalova N, Parry S, Lee C, Smith K, Bernard A, Madisen L, Sunkin SM, Hawrylycz M, Koch C, Zeng H (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19(2):335–346. https://doi.org/10.1038/nn.4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen R, Wu X, Jiang L, Zhang Y (2017) Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep 18(13):3227–3241. https://doi.org/10.1016/j.celrep.2017.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  28. Chasman D, Fotuhi Siahpirani A, Roy S (2016) Network-based approaches for analysis of complex biological systems. Curr Opin Biotechnol 39:157–166. https://doi.org/10.1016/j.copbio.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  29. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201. https://doi.org/10.1016/j.cell.2015.04.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E, Wilson NK, Kent DG, Gottgens B (2016) A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128(8):e20-31. https://doi.org/10.1182/blood-2016-05-716480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xie J, Yang F, Wang J, Karikomi M, Yin Y, Sun J, Wen T, Nie Q (2020) DNF: A differential network flow method to identify rewiring drivers for gene regulatory networks. Neurocomputing 410:202–210. https://doi.org/10.1016/j.neucom.2020.05.028

    Article  PubMed  PubMed Central  Google Scholar 

  32. The Gene Ontology C (2019) The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res 47(D1):D330–D338. https://doi.org/10.1093/nar/gky1055

    Article  CAS  Google Scholar 

  33. Bersanelli M, Mosca E, Remondini D, Castellani G, Milanesi L (2016) Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules. Sci Rep. https://doi.org/10.1038/srep34841

    Article  PubMed  PubMed Central  Google Scholar 

  34. Picart-Armada S, Thompson WK, Buil A, Perera-Lluna A (2018) diffuStats: an R package to compute diffusion-based scores on biological networks. Bioinformatics 34(3):533–534. https://doi.org/10.1093/bioinformatics/btx632

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Li M, Wang J, Pan Y (2011) A new method for identifying essential proteins based on edge clustering coefficient. In: Bioinformatics research and applications. Berlin Heidelberg, Springer. pp 87–98

  36. Koschützki D, Schreiber F (2008) Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul Syst Biol. https://doi.org/10.4137/grsb.s702

    Article  Google Scholar 

  37. Odibat O, Reddy CK (2012) Ranking differential hubs in gene co-expression networks. J Bioinf Comput Biol. https://doi.org/10.1142/S0219720012400021

    Article  Google Scholar 

  38. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. BarabÁSi A-L, Bonabeau E (2003) Scale-free networks. Sci Am 288(5):60–69

    Article  PubMed  Google Scholar 

  40. Canul-Tec JC, Assal R, Cirri E, Legrand P, Brier S, Chamot-Rooke J, Reyes N (2017) Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 544(7651):446–451. https://doi.org/10.1038/nature22064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hatanaka T, Huang W, Wang H, Sugawara M, Prasad PD, Leibach FH, Ganapathy V (2000) Primary structure, functional characteristics and tissue expression pattern of human, a subtype of amino acid transport system. Biochimica et Biophysica Acta (BBA) 1467(1):1–6. https://doi.org/10.1016/S0005-2736(00)00252-2

    Article  CAS  Google Scholar 

  42. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11(8):539–551. https://doi.org/10.1038/nrn2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rammensee S, Kang MS, Georgiou K, Kumar S, Schaffer DV (2018) Dynamics of mechanosensitive neural stem cell differentiation (vol 35, pg 497, 2017). Stem Cells 36(3):467–469. https://doi.org/10.1002/stem.2489

    Article  CAS  Google Scholar 

  44. Perlini LE, Szczurkowska J, Ballif BA, Piccini A, Sacchetti S, Giovedi S, Benfenati F, Cancedda L (2015) Synapsin III acts downstream of semaphorin 3A/CDK5 signaling to regulate radial migration and orientation of pyramidal neurons in vivo. Cell Reports 11(2):234–248. https://doi.org/10.1016/j.celrep.2015.03.022

    Article  CAS  PubMed  Google Scholar 

  45. Whalley K (2009) NEURODEGENERATIVE DISEASE APP: what’s on the inside matters. Nat Rev Neurosci 10(12):836–836. https://doi.org/10.1038/nrn2760

    Article  CAS  Google Scholar 

  46. Inestrosa NC, Varela-Nallar L (2015) Wnt signalling in neuronal differentiation and development. Cell Tissue Res 359(1):215–223. https://doi.org/10.1007/s00441-014-1996-4

    Article  CAS  PubMed  Google Scholar 

  47. Kuwajima T, Soares CA, Sitko AA, Lefebvre V, Mason C (2017) SoxC transcription factors promote contralateral retinal ganglion cell differentiation and axon guidance in the mouse visual system. Neuron 93(5):1110. https://doi.org/10.1016/j.neuron.2017.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Frei JA, Stoeckli ET (2017) SynCAMs—from axon guidance to neurodevelopmental disorders. Mol Cell Neurosci 81:41–48. https://doi.org/10.1016/j.mcn.2016.08.012

    Article  CAS  PubMed  Google Scholar 

  49. Fuellen G (2011) Evolution of gene regulation–on the road towards computational inferences. Brief Bioinform 12(2):122–131. https://doi.org/10.1093/bib/bbq060

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China [No.61873156], the Shanghai Municipal Science and Technology Major Project [No.2018SHZDZX01], Basic Research Program of Shanghai (20JC1412200), Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (LCNBI) and ZJLab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Wang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Yin, Y., Yang, F. et al. Differential Network Analysis Reveals Regulatory Patterns in Neural Stem Cell Fate Decision. Interdiscip Sci Comput Life Sci 13, 91–102 (2021). https://doi.org/10.1007/s12539-020-00415-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-020-00415-2

Keywords

Navigation