Skip to main content
Log in

Ultra-Fast Computation of Excited-States Spectra for Large Systems: Ultraviolet and Fluorescence Spectra of Proteins

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

A workable approach named xTB-sTDDFT was selected to investigate the excited-state spectra of oxytocin (135 atoms), GHRP-6 (120 atoms) and insulin (793 atoms). Three different Hartree–Fock components functionals (wB97XD3: 51%, LC-BLYP: 53%, wB97X: 57%) were used to calculate the excitation spectra, and the results calculated by wB97XD3 functional well agree with the experiments. It’s a deep impression that computed time cost reduced by more than 80%. For polypeptide (oxytocin and GHRP-6), both UV and fluorescence spectra were obtained, and the errors between the calculated and experimental values approximately were 20 nm. For Insulin, the errors are within 15 nm. UV spectrum peak is λcal = 262 nm (λexp = 277 nm, Δλ = 15 nm), and fluorescence spectrum peak is λcal = 294 nm (λexp = 304 nm, Δλ = 10 nm). In summary, a suitable theoretical model is established to ultra-fast calculate the electronic excitation spectra of large systems, such as proteins and biomacromolecules, with good calculation accuracy, fast calculation speed and low cost.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Serafín V, Agüí L, Yáñez-Sedeño P, Pingarrón JM (2014) Electrochemical immunosensor for the determination of insulin-like growth factor-1 using electrodes modified with carbon nanotubes–poly(pyrrole propionic acid) hybrids. Biosens Bioelectron 52:98–104. https://doi.org/10.1016/j.bios.2013.08.021

    Article  CAS  PubMed  Google Scholar 

  2. Ensafi AA, Khoddami E, Rezaei B, Jafari-Asl M (2015) A supported liquid membrane for microextraction of Insulin, and its determination with a pencil graphite electrode modified with RuO2-graphene oxide. Microchim Acta 182(9–10):1599–1607. https://doi.org/10.1007/s00604-015-1478-8

    Article  CAS  Google Scholar 

  3. Amini N, Gholivand MB, Shamsipur M (2014) Electrocatalytic determination of traces of Insulin using a novel silica nanoparticles–Nafion modified glassy carbon electrode. J Electroanal Chem 714–715:70–75. https://doi.org/10.1016/j.jelechem.2013.12.015

    Article  CAS  Google Scholar 

  4. Yu Y, Guo M, Yuan M, Liu W, Hu J (2016) Nickel nanoparticle-modified electrode for ultra-sensitive electrochemical detection of Insulin. Biosens Bioelectron 77:215–219. https://doi.org/10.1016/j.bios.2015.09.036

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Gao D, Zhang P, Gong P, Chen C, Gao G, Cai L (2014) A near infrared fluorescence resonance energy transfer based aptamer biosensor for insulin detection in human plasma. Chem Commun 50(7):811–813. https://doi.org/10.1039/c3cc47649a

    Article  CAS  Google Scholar 

  6. Verdian-Doghaei A, Housaindokht MR (2015) Spectroscopic study of the interaction of insulin and its aptamer—sensitive optical detection of Insulin. J Lumin 159:1–8. https://doi.org/10.1016/j.jlumin.2014.10.025

    Article  CAS  Google Scholar 

  7. Marlin BJ, Mitre M, Dʹamour JA, Chao MV, Froemke RC (2015) Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature 520(7548):499–504. https://doi.org/10.1038/nature14402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen H (2015) Neuroscience: the hard science of oxytocin. Nature 522(7557):410–412. https://doi.org/10.1038/522410a

    Article  CAS  PubMed  Google Scholar 

  9. Sato M, Nakahara K, Goto S, Kaiya H, Miyazato M, Date Y, Murakami N (2006) Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord. Biochem Biophys Res Commun 350(3):598–603. https://doi.org/10.1016/j.bbrc.2006.09.088

    Article  CAS  PubMed  Google Scholar 

  10. Granado M, García-Cáceres C, Frago LM, Argente J, Chowen JA (2010) The Positive Effects of Growth Hormone-Releasing Peptide-6 on Weight Gain and Fat Mass Accrual Depend on the Insulin/Glucose Status. Endocrinology 151(5):2008–2018. https://doi.org/10.1210/en.2009-1394

    Article  CAS  PubMed  Google Scholar 

  11. Cohen AJ, Mori-Sánchez P, Yang W (2011) Challenges for density functional theory. Chem Rev 112(1):289–320. https://doi.org/10.1021/cr200107z

    Article  CAS  PubMed  Google Scholar 

  12. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997–1000. https://doi.org/10.1103/PhysRevLett.52.997

    Article  CAS  Google Scholar 

  13. Grimme S (2013) A simplified Tamm-Dancoff density functional approach for the electronic excitation spectra of very large molecules. J Chem Phys 138(24):244104. https://doi.org/10.1063/1.4811331

    Article  CAS  PubMed  Google Scholar 

  14. Bannwarth C, Grimme S (2014) A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules. Computational and Theoretical Chemistry 1040–1041:45–53. https://doi.org/10.1016/j.comptc.2014.02.023

    Article  CAS  Google Scholar 

  15. Grimme S, Bannwarth C (2016) Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB). J Chem Phys 145(5):054103. https://doi.org/10.1063/1.4959605

    Article  CAS  PubMed  Google Scholar 

  16. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105(11):4009–4037. https://doi.org/10.1021/cr0505627

    Article  CAS  PubMed  Google Scholar 

  17. Neese F (2011) The ORCA program system. WIREs Comput Mol Sci 2(1):73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  18. Neese F (2017) Software update: the ORCA program system, version 4.0. WIREs Comput Mol Sci. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  19. Becke AD (1992) Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. J Chem Phys 97(12):9173–9177. https://doi.org/10.1063/1.463343

    Article  CAS  Google Scholar 

  20. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305. https://doi.org/10.1039/b508541a

    Article  CAS  PubMed  Google Scholar 

  21. Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8(9):1057–1065. https://doi.org/10.1039/b515623h

    Article  CAS  PubMed  Google Scholar 

  22. Hellweg A, Hättig C, Höfener S, Klopper W (2007) Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theoret Chem Acc 117(4):587–597. https://doi.org/10.1007/s00214-007-0250-5

    Article  CAS  Google Scholar 

  23. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):084106. https://doi.org/10.1063/1.2834918

    Article  CAS  PubMed  Google Scholar 

  24. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120(18):8425–8433. https://doi.org/10.1063/1.1688752

    Article  CAS  PubMed  Google Scholar 

  25. Lin Y-S, Li G-D, Mao S-P, Chai J-D (2012) Long-range corrected hybrid density functionals with improved dispersion corrections. J Chem Theory Comput 9(1):263–272. https://doi.org/10.1021/ct300715s

    Article  CAS  PubMed  Google Scholar 

  26. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonggang Liu or Zhongyuan Lu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, J., Han, L. et al. Ultra-Fast Computation of Excited-States Spectra for Large Systems: Ultraviolet and Fluorescence Spectra of Proteins. Interdiscip Sci Comput Life Sci 13, 140–146 (2021). https://doi.org/10.1007/s12539-020-00402-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-020-00402-7

Keywords

Navigation