Skip to main content
Log in

Understanding the Interactions of High-Mobility Group of Protein Domain B1 with DNA Adducts Generated by Platinum Anticancer Molecules Using In Silico Approaches

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Platinum coordination compounds having cis geometry are frequently prescribed for various types of cancers. Protein dysregulation is one of the major factors contributing towards cancer metastasis. Head and neck squamous cell carcinoma (HNSCC) is one of the cancers where platinum-based compounds are used either alone or in combination with radiation as therapy. The underlying interactions of these compounds with both DNA and proteins are crucial for the drug response. The compounds forms DNA adducts which are recognized by conserved, non-chromosomal high-mobility group box 1 (HMGB1) proteins. In the present study, we report the molecular dynamics simulations with the aim of understanding the behavior of platinum molecules that bind DNA. The binding pocket is identified using molecular docking approach. The sixteen mer stretch of the DNA–(d(CC(5IU)CTCTGGACCTTCC) * d(GGAAGGTCCAGAGAGG)) duplex containing G*G* is the major adduct of the anti-tumor molecule. We have performed comparison of inhibitory potential of the already known inhibitors of HNSCC against HMGB1-binding pocket using simulations and docking. Variations in the binding site are observed for these inhibitors–DNA–protein ternary complexes involving defined groups. We have validated our results using geometry-based docking transformations against the specific binding site as well as blind docking that involves complete protein for the identification of specific binding site. Effective dose of the compound reflects its activity. The interactions between DNA and HMGB1 are defined by hydrogen bonds and van der Waals contacts. However, the ternary complex stabilization is mediated by hydrogen bonding and hydrophobic interactions. Significant deviations are observed in the RMSD values. We have classified the inhibitors in two categories where group A compounds shows interactions against the HMGB1 domain box B and group B toward both boxes A and B. Experimental IC50 values corroborates with the binding energies of the compounds. We propose the predicted pattern of binding as specific for platinum inhibitors. These studies are a new addition to the existing structural–activity relationship-based pharmacophore generation with a potential for use in the treatment of head and neck squamous cell carcinoma. The compounds can be validated as lead molecules using in vitro and in vivo experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MIA:

Melanoma inhibitory activity

HMGB1:

High-mobility group protein domain B1

HNSCC:

Head and neck squamous cell carcinoma

References

  1. Liu Y, Xie C, Zhang X, Huang D, Zhou X, Tan P et al (2010) Elevated expression of HMGB1 in squamous-cell carcinoma of the head and neck and its clinical significance. Eur J Cancer 46:3007–3015

    Article  PubMed  CAS  Google Scholar 

  2. Sasahira T, Kirita T, Oue N, Bhawal UK, Yamamoto K, Fujii K et al (2008) High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci 99:1806–1812

    PubMed  CAS  Google Scholar 

  3. Matta A, Ralhan R (2009) Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. Head Neck Oncol 1:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fribley AM, Evenchik B, Zeng Q, Park BK, Guan JY, Zhang H et al (2006) Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem 281:31440–31447

    Article  PubMed  CAS  Google Scholar 

  5. Alamgir M, Jamal Q, Mirza T, Jafarey NA (2010) Genetics of oral cancer in relationship to carcinogen- metabolizing genes. Pak J Otolaryngol 26:81–84

    Google Scholar 

  6. Yu L, Chen M, Li Z, Wen J, Fu J, Guo D et al (2011) Celecoxib antagonizes the cytotoxicity of Cisplatin in human esophageal squamous cell carcinoma cells by reducing intracellular Cisplatin accumulation. Mol Pharmacol 79:608–617

    Article  PubMed  CAS  Google Scholar 

  7. Rubio Suarez A, Teigeiro Nunez V, Gallo Teran J, Senaris Gonzalez B, Mesuro Dominguez N (2003) Induction chemotherapy using vinorelbine, cisplatin, and UFT in advanced pharyngeo-laryngeal carcinomas: results of a phase II study. Acta Otorrinolaringol Esp 54:697–703

    Article  PubMed  CAS  Google Scholar 

  8. Ishiguro H, Nakaigawa N, Miyoshi Y, Fujinami K, Kubota Y, Uemura H (2005) Receptor for advanced glycation end products (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development. Prostate 64:92–100

    Article  PubMed  CAS  Google Scholar 

  9. Mandic R, Rodgarkia-Dara CJ, Krohn V, Wiegand S, Grenman R, Werner JA (2009) Cisplatin resistance of the HNSCC cell line UT-SCC-26A can be overcome by stimulation of the EGF-receptor. Anticancer Res 29:1181–1187

    PubMed  CAS  Google Scholar 

  10. Mandic R, Schamberger CJ, Muller JF, Geyer M, Zhu L, Carey TE et al (2005) Reduced cisplatin sensitivity of head and neck squamous cell carcinoma cell lines correlates with mutations affecting the COOH-terminal nuclear localization signal of p53. Clin Cancer Res 11:6845–6852

    Article  PubMed  CAS  Google Scholar 

  11. Volp K, Brezniceanu ML, Bosser S, Brabletz T, Kirchner T, Gottel D et al (2006) Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut 55:234–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Stros M, Polanska E, Struncova S, Pospisilova S (2009) HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha. Nucleic Acids Res 37:2070–2086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tang D, Kang R, Zeh HJ, Lotze MT (2010) High-mobility group box 1 and cancer. Biochim Biophys Acta 1799:131–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Stros M, Ozaki T, Bacikova A, Kageyama H, Nakagawara A (2002) HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J Biol Chem 277:7157–7164

    Article  PubMed  CAS  Google Scholar 

  15. Jung Y, Lippard SJ (2003) Nature of full-length HMGB1 binding to cisplatin-modified DNA. Biochemistry 42:2664–2671

    Article  PubMed  CAS  Google Scholar 

  16. Ohndorf UM, Rould MA, He Q, Pabo CO, Lippard SJ (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399:708–712

    Article  PubMed  CAS  Google Scholar 

  17. Rabik CA, Dolan ME (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33:9–23

    Article  PubMed  CAS  Google Scholar 

  18. Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407:784–788

    Article  PubMed  CAS  Google Scholar 

  19. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  PubMed  CAS  Google Scholar 

  20. Girnun GD, Naseri E, Vafai SB, Qu L, Szwaya JD, Bronson R et al (2007) Synergy between PPARgamma ligands and platinum-based drugs in cancer. Cancer Cell 11:395–406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bischoff G, Hoffmann S (2002) DNA-binding of drugs used in medicinal therapies. Curr Med Chem 9:312–348

    Article  PubMed  CAS  Google Scholar 

  22. Han X, Gao X (2001) Sequence specific recognition of ligand-DNA complexes studied by NMR. Curr Med Chem 8:551–581

    Article  PubMed  CAS  Google Scholar 

  23. Neidle S, Nunn CM (1998) Crystal structures of nucleic acids and their drug complexes. Nat Prod Rep 15:1–15

    Article  PubMed  CAS  Google Scholar 

  24. Sherman SE, Gibson D, Wang AH, Lippard SJ (1985) X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-[Pt(NH3)2(d(pGpG))]. Science 230:412–417

    Article  PubMed  CAS  Google Scholar 

  25. Takahara PM, Frederick CA, Lippard SJ (1996) Crystal structure of the anticancer drug cisplatin bound to duplex DNA. J Am Chem Soc 118:12309–12321

    Article  CAS  Google Scholar 

  26. Boulikas T, Pantos A, Bellis E, Christofis P (2007) Designing platinum compounds in cancer: structures and mechanisms. Cancer Therapy 5:537–583

    Google Scholar 

  27. Luo Z, Chang J, Guo Y, Yu H, Lu F, Wu X et al (2011) Continuous infusion of 5-FU with split-dose cisplatin: an effective treatment for advanced squamous-cell carcinoma of the head and neck. Clin Invest Med 34:E8–E13

    Article  PubMed  CAS  Google Scholar 

  28. Chi Y, Ren JH, Yang L, Cui CX, Li JL, Wang JW (2011) Phase II clinical study on the modified DCF regimen for treatment of advanced gastric carcinoma. Chin Med J 124:2997–3002

    PubMed  CAS  Google Scholar 

  29. Su NW, Leu YS, Lee JC, Chen YJ, Chen HW, Liu CJ et al (2011) Comparison of the efficacy and toxicity of two dose levels of cisplatin/5-fluorouracil as the chemoradiotherapy regimen for the treatment of locally advanced squamous cell carcinoma of the head and neck. Acta Otolaryngol 131:1333–1340

    Article  PubMed  CAS  Google Scholar 

  30. Coluccia M, Natile G (2007) Trans-platinum complexes in cancer therapy. Anticancer Agents Med Chem 7:111–123

    Article  PubMed  CAS  Google Scholar 

  31. Gupta D, Shukla P, Bisht SS, Dhawan A, Pant MC, Bhatt ML et al (2009) A prospective comparision of sequential chemoradiation vs concurrent chemoradiation in locally advanced oropharyngeal carcinomas. Cancer Biol Ther 8:213–217

    Article  PubMed  CAS  Google Scholar 

  32. Rahman A, Roh JK, Wolpert-DeFilippes MK, Goldin A, Venditti JM, Woolley PV (1988) Therapeutic and pharmacological studies of tetrachloro(d, l-trans)1,2-diaminocyclohexane platinum(IV) (tetraplatin), a new platinum analogue. Cancer Res 48:1745–1752

    PubMed  CAS  Google Scholar 

  33. Kroning R, Jones JA, Hom DK, Chuang CC, Sanga R, Los G et al (1995) Enhancement of drug sensitivity of human malignancies by epidermal growth factor. Br J Cancer 72:615–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. DeMario MD, Ratain MJ (1997) Rationale for phase I study of UFT plus leucovorin and oral JM-216. Oncology 11:26–29

    PubMed  CAS  Google Scholar 

  35. Belvedere G, Imperatori L, Damia G, Tagliabue G, Meijer C, de Vries EG et al (1996) In vitro and in vivo characterisation of low-resistant mouse reticulosarcoma (M5076) sublines obtained after pulse and continuous exposure to cisplatin. Eur J Cancer 32A:2011–2018

    Article  PubMed  CAS  Google Scholar 

  36. Plasencia C, Abad A, Martinez-Balibrea E, Taron M (2004) Antiproliferative effects of ZD0473 (AMD473) in combination with 5-fluorouracil or SN38 in human colorectal cancer cell lines. Invest New Drugs 22:399–409

    Article  PubMed  CAS  Google Scholar 

  37. Holford J, Raynaud F, Murrer BA, Grimaldi K, Hartley JA, Abrams M et al (1998) Chemical, biochemical and pharmacological activity of the novel sterically hindered platinum co-ordination complex, cis-[amminedichloro(2-methylpyridine)] platinum(II) (AMD473). Anticancer Drug Des 13:1–18

    PubMed  CAS  Google Scholar 

  38. Teicher BA, Holden SA, Kelley MJ, Shea TC, Cucchi CA, Rosowsky A et al (1987) Characterization of a human squamous carcinoma cell line resistant to cis-diamminedichloroplatinum(II). Cancer Res 47:388–393

    PubMed  CAS  Google Scholar 

  39. Skov K, MacPhail S (1991) Interaction of platinum drugs with clinically relevant x-ray doses in mammalian cells: a comparison of cisplatin, carboplatin, iproplatin, and tetraplatin. Int J Radiat Oncol Biol Phys 20:221–225

    Article  PubMed  CAS  Google Scholar 

  40. Yamano Y, Shiiba M, Negoro K, Nakatani K, Kasamatsu A, Yamatoji M et al (2011) Antitumor activity of satraplatin in cisplatin-resistant oral squamous cell carcinoma cells. Head Neck 33:309–317

    PubMed  Google Scholar 

  41. Chang PM, Tzeng CH, Chen MH, Tsao CJ, Su WC, Hwang WS et al (2011) Triweekly reduced-dose docetaxel combined with cisplatin in recurrent/metastatic head and neck squamous cell carcinoma: a multicenter phase II study. Cancer Chemother Pharmacol 68:1477–1484

    Article  PubMed  CAS  Google Scholar 

  42. Tao Y, Rezai K, Brain E, Etessami A, Lusinchi A, Temam S et al (2011) A phase I trial combining oral cisplatin (CP Ethypharm) with radiotherapy in patients with locally advanced head and neck squamous cell carcinoma. Radiother Oncol 98:42–47

    Article  PubMed  CAS  Google Scholar 

  43. Nakajima K, Isonishi S, Saito M, Tachibana T, Ishikawa H (2010) Characterization of two independent, exposure-time dependent paclitaxel-resistant human ovarian carcinoma cell lines. Hum Cell 23:156–163

    Article  PubMed  CAS  Google Scholar 

  44. Mellish KJ, Barnard CF, Murrer BA, Kelland LR (1995) DNA-binding properties of novel cis- and trans platinum-based anticancer agents in 2 human ovarian carcinoma cell lines. Int J Cancer 62:717–723

    Article  PubMed  CAS  Google Scholar 

  45. Samimi G, Kishimoto S, Manorek G, Breaux JK, Howell SB (2007) Novel mechanisms of platinum drug resistance identified in cells selected for resistance to JM118 the active metabolite of satraplatin. Cancer Chemother Pharmacol 59:301–312

    Article  PubMed  CAS  Google Scholar 

  46. Dhar S, Lippard SJ (2009) Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc Natl Acad Sci USA 106:22199–22204

    Article  PubMed  Google Scholar 

  47. SYBYL-X 1.1, Tripos International. 1699, South Hanley Rd, St Louis, Missouri, 63144, USA

  48. Kim YJ, Kim EA, Sohn UD, Yim CB, Im C (2010) Cytotoxic activity and structure activity relationship of ceramide analogues in Caki-2 and HL-60 cells. Korean J Physiol Pharmacol 14:441–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kettmann V, Kost’álová D, Höltje HD (2004) Human topoisomerase I poisoning: docking protoberberines into a structure-based binding site model. J Comput Aided Mol Des 18(12):785–796

    Article  PubMed  CAS  Google Scholar 

  50. Buurma NJ, Haq I (2008) Calorimetric and spectroscopic studies of Hoechst 33258: self-association and binding to non-cognate DNA. J Mol Biol 381(3):607–621

    Article  PubMed  CAS  Google Scholar 

  51. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gupta S, Misra G, Pant MC, Seth PK (2011) Prediction of a new surface binding pocket and evaluation of inhibitors against huntingtin interacting protein 14: an insight using docking studies. J Mol Model 17:3047–3056

    Article  PubMed  CAS  Google Scholar 

  53. Mashiach E, Schneidman-Duhovny D, Andrusier N, Nussinov R, Wolfson HJ (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. doi:10.1093/nar/gkn186

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kartasasmita RE, Herowati R, Gusdinar T (2010) Docking studies of quercetin derivatives on inducible nitric oxide synthase and prediction of their absorption and distribution properties. J Appl Sci 10:3098–3104

    Article  CAS  Google Scholar 

  55. Mostrag-Szlichtyng A, Worth A (2010) Review of QSAR models and software tools for predicting biokinetic properties. European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Luxembourg

    Google Scholar 

  56. Lobell M, Sivarajah V (2003) In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pKa and AlogP98 values. Mol Divers 7:69–87

    Article  PubMed  CAS  Google Scholar 

  57. Ohndorf UM, Rould MA, He Q, Pabo CO, Lippard SJ (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399(6737):708–712

    Article  PubMed  CAS  Google Scholar 

  58. Holford J, Sharp SY, Murrer BA, Abrams M, Kelland LR (1998) In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMD473. Br J Cancer 77:366–373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gupta S, Misra G, Pant MC, Seth PK (2012) Targeting the epidermal growth factor receptor: exploring the potential of novel inhibitor N-(3-Ethynylphenyl)-6, 7-bis (2-methoxyethoxy) quinolin-4-amine using docking and molecular dynamics simulation. Protein Pept Lett 19:955–968

    Article  PubMed  CAS  Google Scholar 

  60. Gupta S, Misra G, Pant MC, Seth PK (2012) Identification of novel potent inhibitors aginst Bcl-XL anti-apoptotic protein using docking studies. Protein Pept Lett 19:1302–1317

    Article  Google Scholar 

  61. Volz HC, Seidel C, Laohachewin D, Kaya Z, Muller OJ, Pleger ST et al (2010) HMGB1: the missing link between diabetes mellitus and heart failure. Basic Res Cardiol 105:805–820

    Article  PubMed  CAS  Google Scholar 

  62. Jin YC, Kim SW, Cheng F, Shin JH, Park JK, Lee S et al (2011) The effect of biodegradable gelatin microspheres on the neuroprotective effects of high mobility group box 1 A box in the postischemic brain. Biomaterials 32:899–908

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The support of Department of Biotechnology, Ministry of Science and Technology, Government of India, to Bioinformatics Centre at Biotech Park, Lucknow, is gratefully acknowledged. We acknowledge the kind support of Dr. Janardhan Reddy, Research Associate, Department of Microbiology and Molecular Biology, National JALMA Institute of Leprosy and OMD, Agra for technical review of the manuscript. We would like to thank Department of Radiotherapy and Chemotherapy, Chhatrapati Shahuji Maharaj Medical University, Lucknow, Uttar Pradesh, India, for useful discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gauri Misra or Shipra Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, G., Gupta, S. & Jabalia, N. Understanding the Interactions of High-Mobility Group of Protein Domain B1 with DNA Adducts Generated by Platinum Anticancer Molecules Using In Silico Approaches. Interdiscip Sci Comput Life Sci 10, 476–485 (2018). https://doi.org/10.1007/s12539-016-0204-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0204-5

Keywords

Navigation