Skip to main content
Log in

A factorization with update procedures for a KKT matrix arising in direct optimal control

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

Quadratic programs obtained for optimal control problems of dynamic or discrete-time processes usually involve highly block structured Hessian and constraints matrices, to be exploited by efficient numerical methods. In interior point methods, this is elegantly achieved by the widespread availability of advanced sparse symmetric indefinite factorization codes. For active set methods, however, conventional dense matrix techniques suffer from the need to update base matrices in every active set iteration, thereby loosing the sparsity structure after a few updates. This contribution presents a new factorization of a KKT matrix arising in active set methods for optimal control. It fully respects the block structure without any fill-in. For this factorization, matrix updates are derived for all cases of active set changes. This allows for the design of a highly efficient block structured active set method for optimal control and model predictive control problems with long horizons or many control parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albersmeyer, J., Bock, H.: Efficient sensitivity generation for large scale dynamic systems. Technical report, SPP 1253 Preprints, University of Erlangen (2009)

  2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

  3. Bartlett R., Biegler L.: QPSchur: a dual, active set, Schur complement method for large-scale and structured convex quadratic programming algorithm. Optim. Eng. 7, 5–32 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartlett, R., Wächter, A., Biegler, L.: Active set vs. interior point strategies for model predictive control. In: Proceedings of the American Control Conference, Chicago, IL, pp. 4229–4233 (2000)

  5. Benzi M., Golub G., Liesen J.: Numerical solution of saddle-point problems. Acta Numerica 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Best M.: An algorithm for the solution of the parametric quadratic programming problem. In: Fischer, H., Riedmüller, B., Schäffler, S. (eds.) Applied Mathematics and Parallel Computing—Festschrift for Klaus Ritter, Chap. 3, pp. 57–76. Physica-Verlag, Heidelberg (1996)

    Google Scholar 

  7. Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress, pp. 242–247. Pergamon Press, Budapest (1984)

  8. Bock H., Diehl M., Kostina E., Schlöder J.: Constrained optimal feedback control for DAE. In: Biegler, L., Ghattas, O., Heinkenschloss, M., Keyes, D., van Bloemen Waanders, B. (eds.) Real-Time PDE-Constrained Optimization, Chap. 1, pp. 3–24. SIAM, Philadelphia (2007)

    Chapter  Google Scholar 

  9. Davis T.: Algorithm 832: UMFPACK—an unsymmetric-pattern multifrontal method with a column pre-ordering strategy. ACM Trans. Math. Softw. 30, 196–199 (2004)

    Article  MATH  Google Scholar 

  10. Davis T., Hager W.: Multiple-rank modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 22(4), 997–1013 (2000)

    Article  MathSciNet  Google Scholar 

  11. Diehl M., Bock H., Schlöder J., Findeisen R., Nagy Z., Allgöwer F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Proc. Contr. 12(4), 577–585 (2002)

    Article  Google Scholar 

  12. Diehl M., Kuehl P., Bock H., Schlöder J.: Schnelle Algorithmen für die Zustands- und Parameterschätzung auf bewegten Horizonten. Automatisierungstechnik 54(12), 602–613 (2006)

    Article  Google Scholar 

  13. Duff I.: MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Trans. Math. Softw. 30(2), 118–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duff I., Reid J.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans. Math. Softw. 9(3), 302–325 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eldersveld S., Saunders M.: A block-LU update for large scale linear programming. SIAM J. Matrix Anal. Appl. 13, 191–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferreau H., Bock H., Diehl M.: An online active set strategy to overcome the limitations of explicit MPC. Int. J. Robust Nonlinear Control 18(8), 816–830 (2008)

    Article  MathSciNet  Google Scholar 

  17. Fletcher R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1987)

    MATH  Google Scholar 

  18. Fletcher, R.: Resolving degeneracy in quadratic programming. Numerical Analysis Report NA/135, University of Dundee, Dundee, Scotland (1991)

  19. Fletcher, R.: Approximation Theory and Optimization. Dense Factors of Sparse Matrices, pp. 145–166. Tributes to M.J.D. Powell. Cambridge University Press (1997)

  20. Fletcher, R.: Numerical Analysis 1997. Block Triangular Orderings and Factors for Sparse Matrices in LP, pp. 91–110. Pitman Research Notes in Mathematics, vol. 380. Longman, Harlow (1998)

  21. Gerdts M.: Solving mixed-integer optimal control problems by Branch&Bound: a case study from automobile test-driving with gear shift. Optimal Control Appl. Methods 26, 1–18 (2005)

    Article  MathSciNet  Google Scholar 

  22. Gertz E., Wright S.: Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29, 58–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gill P., Golub G., Murray W., Saunders M.A.: Methods for modifying matrix factorizations. Math. Comput. 28(126), 505–535 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gill P., Murray W., Saunders M., Wright M.: Sparse matrix methods in optimization. SIAM J. Sci. Stat. Comput. 5(3), 562–589 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gill P., Murray W., Saunders M., Wright M.: A practical anti-cycling procedure for linearly constrained optimization. Math. Program. 45(1–3), 437–474 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gill P., Murray W., Saunders M., Wright M.: Inertia-controlling methods for general quadratic programming. SIAM Rev. 33(1), 1–36 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gill, P., Murray, W., Saunders, M.: User’s Guide For QPOPT 1.0: A Fortran Package for Quadratic Programming (1995)

  28. Golub G., van Loan C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  29. Hall J., McKinnon K.: The simplest examples where the simplex method cycles and conditions where the EXPAND method fails to prevent cycling. Math. Program. Ser. A & B 100(1), 133–150 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Han S.: Superlinearly convergent variable-metric algorithms for general nonlinear programming problems. Math. Program. 11, 263–282 (1976)

    Article  Google Scholar 

  31. Haseltine E., Rawlings J.: Critical evaluation of extended Kalman filtering and moving-horizon estimation. Ind. Eng. Chem. Res. 44, 2451–2460 (2005)

    Article  Google Scholar 

  32. Huynh, H.: A large-scale quadratic programming solver based on block-LU updates of the KKT system. PhD thesis, Stanford University (2008)

  33. Kirches C., Sager S., Bock H., Schlöder J.: Time-optimal control of automobile test drives with gear shifts. Optimal Control Appl. Methods 31(2), 137–153 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kirches C., Bock H., Schlöder J., Sager S.: Block structured quadratic programming for the direct multiple shooting method for optimal control. Optim. Methods Softw. 26(2), 239–257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Leineweber D., Bauer I., Schäfer A., Bock H., Schlöder J.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization (Parts I and II). Comput. Chem. Eng. 27, 157–174 (2003)

    Article  Google Scholar 

  36. Nocedal J., Wright S.: Numerical Optimization, 2nd edn. Springer, Berlin, Heidelberg, New York (2006)

    MATH  Google Scholar 

  37. Powell M.: Algorithms for nonlinear constraints that use Lagrangian functions. Math. Program. 14(3), 224–248 (1978)

    Article  MATH  Google Scholar 

  38. Powell, M.: ZQPCVX: a Fortran subroutine for convex quadratic programming. Technical report, Department of Applied Mathematics and Theoretical Physics, Cambridge University (1983)

  39. Schmid C., Biegler L.: Quadratic programming methods for tailored reduced Hessian SQP. Comput. Chem. Eng. 18(9), 817–832 (1994)

    Article  Google Scholar 

  40. Steinbach, M.: Fast recursive SQP methods for large-scale optimal control problems. PhD thesis, Ruprecht-Karls-Universität Heidelberg (1995)

  41. Vanderbei R.: LOQO: an interior point code for quadratic programming. Optim. Methods Softw. 11(1–4), 451–484 (1999)

    Article  MathSciNet  Google Scholar 

  42. Wächter A., Biegler L.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wirsching, L., Albersmeyer, J., Kühl, P., Diehl, M., Bock, H.: An adjoint-based numerical method for fast nonlinear model predictive control. In: Chung, M., Misra, P. (eds.) Proceedings of the 17th IFAC World Congress, Seoul, Korea, July 6–11, 2008. IFAC-PapersOnLine, vol. 17, pp. 1934–1939 (2008)

  44. Wright, S.: Applying new optimization algorithms to model predictive control. In: Fifth International Conference on Chemical Process Control—CPC V, pp. 147–155. CACHE Publications (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kirches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirches, C., Bock, H.G., Schlöder, J.P. et al. A factorization with update procedures for a KKT matrix arising in direct optimal control. Math. Prog. Comp. 3, 319–348 (2011). https://doi.org/10.1007/s12532-011-0030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-011-0030-z

Keywords

Mathematics Subject Classification (2010)

Navigation