Skip to main content

Advertisement

Log in

Glacier Volume Estimation Using Laminar-Flow and Volume–Area Scaling Techniques in the Chenab Basin

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

A proper estimate of glacier stored water is helpful to assess the long-term availability of water in any river basin. A method based on the laminar flow and volume–area scaling is used to estimate glacier stored water in the Chenab basin. Here, we used Landsat 8 images from 2015 to 2019 for the estimation of glacier surface velocity. The laminar flow technique needs surface velocity and slope of the glaciers, and other parameters which are assumed to be constants. The surface velocity of 223 glaciers was assessed by using the sub-pixel correlation technique, applied to Landsat 8 images. The slope was estimated using ASTER DEM. We calculated the average surface velocity and thickness as 11.12 ± 0.05 m a−1 and 54.56 ± 7.4 m, respectively, and the maximum ice thickness as 470 ± 63.9 m. Moreover, we have developed a volume–area scaling equation using laminar flow estimates and applied it to the remaining 1945 glaciers. The glacier-stored water estimated for 2168 Chenab glaciers covering 2519 ± 125.8 km2 area has been estimated as 145.61 ± 26.2 Gt. Our investigation provides decent estimates of glacier stored water, which helps to advance hydrological studies, thereby developing innovative mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Azam, M. F., Wagnon, P., Ramanathan, A., Vincent, C., Sharma, P., Arnaud, Y., Linda, A., Pottakkal, J. G., Chevallier, P., Singh, V. B., & Berthier, E. (2012). From balance to imbalance: A shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India. Journal of Glaciology, 58(208), 315–324. https://doi.org/10.3189/2012JoG11J123

    Article  Google Scholar 

  • Bahr, D. B., Meier, M. F., & Peckham, S. D. (1997). The physical basis of glacier volume-area scaling. Journal of Geophysical Research: Solid Earth, 102(B9), 20355–20362. https://doi.org/10.1029/97JB01696

    Article  Google Scholar 

  • Bahr, D. B., Pfeffer, W. T., & Kaser, G. (2015). A review of volume-area scaling of glaciers. Reviews of Geophysics, 53(1), 95–140. https://doi.org/10.1002/2014RG000470

    Article  Google Scholar 

  • Bahuguna, I. M., Kulkarni, A. V., Nayak, S., Rathore, B. P., Negi, H. S., & Mathur, P. (2007). Himalayan glacier retreat using IRS 1C PAN stereo data. International Journal of Remote Sensing, 28(2), 437–442.

    Article  Google Scholar 

  • Bahuguna, I., Rathore, B. P., Jasrotia, A. S., Randhawa, S. S., Yadav, S. K. S., Ali, S., Gautam, N., Poddar, J., Srigyan, M., Dhanade, A., & Joshi, P. (2021). Recent glacier area changes in Himalaya-Karakoram and the impact of latitudinal variation. Current Science, 121(7), 929–940.

    Article  Google Scholar 

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., & Stoffel, M. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314. https://doi.org/10.1126/science.1215828

    Article  Google Scholar 

  • Brahmbhatt, R. M., Bahuguna, I. M., Rathore, B. P., Kulkarni, A. V., Shah, R. D., Rajawat, A. S., & Kargel, J. S. (2017). Significance of glacio-morphological factors in glacier retreat: A case study of part of Chenab basin, Himalaya. Journal of Mountain Science, 14(1), 128–141.

    Article  Google Scholar 

  • Chaturvedi, R. K., Kulkarni, A., Karyakarte, Y., Joshi, J., & Bala, G. (2014). Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Climatic Change, 123(2), 315–328.

    Article  Google Scholar 

  • Chen, J., & Ohmura, A. (1990). Estimation of Alpine glacier water resources and their change since the 1870s. IAHS Publication, 193, 127–135.

    Google Scholar 

  • Clarke, G. K., Anslow, F. S., Jarosch, A. H., Radić, V., Menounos, B., Bolch, T., & Berthier, E. (2013). Ice volume and subglacial topography for western Canadian glaciers from mass balance fields, thinning rates, and a bed stress model. Journal of Climate, 26(12), 4282–4303. https://doi.org/10.1175/JCLI-D-12-00513.1

    Article  Google Scholar 

  • Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers. Academic Press.

    Google Scholar 

  • Das, S., & Sharma, M. C. (2019). Glacier terminus retreat, mass budget, and surface velocity measurements for the Jankar Chhu Watershed, Lahaul Himalaya, India. Earth System Science Data Discussions. https://doi.org/10.5194/essd-2019-201

    Article  Google Scholar 

  • Das, S., Sharma, M. C., & Miles, K. E. (2022). Flow velocities of the debris-covered Miyar Glacier, western Himalaya, India. Geografiska Annaler: Series a, Physical Geography, 104(1), 11–34.

    Article  Google Scholar 

  • Farinotti, D., Huss, M., Bauder, A., Funk, M., & Truffer, M. (2009). A method to estimate ice volume and ice-thickness distribution of alpine glaciers. Journal of Glaciology, 55(191), 422–430. https://doi.org/10.3189/002214309788816759

    Article  Google Scholar 

  • Frey, H., Haeberli, W., Linsbauer, A., Huggel, C., & Paul, F. (2010). A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials. Natural Hazards and Earth System Sciences, 10(2), 339–352. https://doi.org/10.5194/nhess-10-339-2010

    Article  Google Scholar 

  • Frey, H., Machguth, H., Huss, M., Huggel, C., Bajracharya, S., Bolch, T., Kulkarni, A., Linsbauer, A., Salzmann, N., & Stoffel, M. (2014). Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods. The Cryosphere, 8(6), 2313–2333. https://doi.org/10.5194/tc-8-2313-2014

    Article  Google Scholar 

  • Gantayat, P., Kulkarni, A. V., & Srinivasan, J. (2014). Estimation of ice thickness using surface velocities and slope: Case study at Gangotri Glacier. India. Journal of Glaciology, 60(220), 277–282. https://doi.org/10.3189/2014JoG13J078

    Article  Google Scholar 

  • Garg, P. K., Shukla, A., Tiwari, R. K., & Jasrotia, A. S. (2017). Assessing the status of glaciers in part of the Chandra basin, Himachal Himalaya: A multiparametric approach. Geomorphology, 284, 99–114.

    Article  Google Scholar 

  • Gopika, J. S., Kulkarni, A. V., Prasad, V., Srinivasalu, P., & Raman, A. (2021). Estimation of glacier stored water in the Bhaga basin using laminar flow and volume-area scaling methods. Remote Sensing Applications: Society and Environment, 24, 100656.

    Article  Google Scholar 

  • Grinsted, A. (2013). An estimate of global glacier volume. The Cryosphere, 7(1), 141–151. https://doi.org/10.5194/tc-7-141-2013

    Article  Google Scholar 

  • Haeberli, W., & Hölzle, M. (1995). Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps. Annals of Glaciology, 21, 206–212. https://doi.org/10.3189/s0260305500015834

    Article  Google Scholar 

  • Haq, M. A., Azam, M. F., & Vincent, C. (2021). Efficiency of artificial neural networks for glacier ice-thickness estimation: A case study in western Himalaya, India. Journal of Glaciology, 67(264), 671–684.

    Article  Google Scholar 

  • Hock, R., Maussion, F., Marzeion, B., & Nowicki, S. (2023). What is the global glacier ice volume outside the ice sheets? Journal of Glaciology, 69(273), 204–210.

    Article  Google Scholar 

  • Hooke, R. L. (2005). Principles of glacier mechanics (2nd ed.). Cambridge University Press.

    Book  Google Scholar 

  • Huss, M., & Farinotti, D. (2012). Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2012JF002523

    Article  Google Scholar 

  • Huss, M., Farinotti, D., Bauder, A., & Funk, M. (2008). Modelling runoff from highly glacierised alpine drainage basins in a changing climate. Hydrological Processes, 22(19), 3888–3902. https://doi.org/10.1002/hyp.7055

    Article  Google Scholar 

  • Kulkarni, A.V., Goswami, A., Ramsankaran, R.A.A.J., Singh, G., Dashora, A., Pradeep, S., Remya, S.N., Nagashri, K., Arya, & A.R., Godha, A. (2019). HIGTHIM: User manual, Divecha Centre for climate change. Retrieved 23 August 2021 from https://www.researchgate.net/publication/333603072_HIMALAYAN_GLACIER_THICKNESS_MAPPER_HIGTHIM_USER_MANUAL_Number_of_pages_34_This_tool_is_written_in_python_and_gives_spatial_distribution_of_Glaciers_bottom_topography_and_Location_and_extent_of_potenti

  • Kulkarni, A. V., Bahuguna, I. M., & Rathore, B. P. (2009). Application of Remote Sensing to monitor glaciers. NNRMS Bulletin, 33, 79–82.

    Google Scholar 

  • Kulkarni, A. V., & Karyakarte, Y. (2014). Observed changes in Himalaya glaciers. Current Science, 106(2), 237–244.

    Google Scholar 

  • Kulkarni, A. V., Nayak, S., & Pratibha, S. (2017). Variability of Glaciers and snow cover. In M. Rajeevan & S. Nayak (Eds.), Observed climate variability and change over the Indian region (pp. 193–219). Springer.

    Chapter  Google Scholar 

  • Kulkarni, A., Prasad, V., Shirsat, T., Chaturvedi, R. K., & Bahuguna, I. M. (2021). Impact of climate change on the glaciers of spiti river basin, Himachal Pradesh, India. Journal of the Indian Society of Remote Sensing, 49(8), 1951–1963. https://doi.org/10.1007/s12524-021-01368-9

    Article  Google Scholar 

  • Kumar, B., & Prabhu, M. T. S. (2012). Impacts of climate change: Glacial lake outburst floods (GLOFs). Climate Change in Sikkim Patterns, Impacts and Initiatives. Information and Public Relations Department, Government of Sikkim, Gangtok.

  • Kumari, S., Pandit, A., Ramsankaran, R. A. A. J., Soheb, M., Angchuk, T., & Ramanathan, A. L. (2021). Modelling ice thickness distribution and volume of Patsio Glacier in Western Himalayas. Journal of Earth System Science, 130(3), 1–14.

    Article  Google Scholar 

  • Leprince, S., Barbot, S., Ayoub, F., & Avouac, J. P. (2007). Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1529–1558. https://doi.org/10.1109/TGRS.2006.888937

    Article  Google Scholar 

  • Li, H., Ng, F., Li, Z., Qin, D., & Cheng, G. (2012). An extended “perfect-plasticity” method for estimating ice thickness along the flow line of mountain glaciers. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2011JF002104

    Article  Google Scholar 

  • Linsbauer, A., Paul, F., & Haeberli, W. (2012). Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2011JF00231

    Article  Google Scholar 

  • Maanya, U. S., Kulkarni, A. V., Tiwari, A., Bahr, E. D., & Srinivasan, J. (2016). Identification of potential glacial lake sites and mapping maximum extent of existing glacier lakes in Drang Drung and Samudra Tapu glaciers, Indian Himalaya. Current Science, 111, 553–560.

    Article  Google Scholar 

  • Macheret, Y. Y., & Zhuravlev, A. B. (1982). Radio echo-sounding of Svalbard glaciers. Journal of Glaciology, 28(99), 295–314.

    Article  Google Scholar 

  • Mair, R., & Kuhn, M. (1994). Temperature and movement measurements at a bergschrund. Journal of Glaciology, 40(136), 561–565. https://doi.org/10.3189/s0022143000012442

    Article  Google Scholar 

  • Marzeion, B., Jarosch, A. H., & Hofer, M. (2012). Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere, 6(6), 1295–1322. https://doi.org/10.5194/tc-6-1295-2012

    Article  Google Scholar 

  • McNabb, R. W., Hock, R., O’Neel, S., Rasmussen, L. A., Ahn, Y., Braun, M., Conway, H., Herreid, S., Joughin, I., Pfeffer, W. T., & Smith, B. E. (2012). Using surface velocities to calculate ice thickness and bed topography: A case study at Columbia Glacier, Alaska, USA. Journal of Glaciology, 58(212), 1151–1164. https://doi.org/10.3189/2012JoG11J249

    Article  Google Scholar 

  • Millan, R., Mouginot, J., Rabatel, A., & Morlighem, M. (2022). Ice velocity and thickness of the world’s glaciers. Nature Geoscience, 15(2), 124–129.

    Article  Google Scholar 

  • Negi, H. S., Kanda, N., Shekhar, M. S., & Ganju, A. (2018). Recent wintertime climatic variability over the North-West Himalayan cryosphere. Current Science, 114(4), 760–770.

    Article  Google Scholar 

  • Nolan, M., Motkya, R. J., Echelmeyer, K., & Trabant, D. C. (1995). Ice-thickness measurements of Taku Glacier, Alaska, USA, and their relevance to its recent behaviour. Journal of Glaciology, 41(139), 541–553. https://doi.org/10.3189/s0022143000034870

    Article  Google Scholar 

  • Nuimura, T., Sakai, A., Taniguchi, K., Nagai, H., Lamsal, D., Tsutaki, S., Kozawa, A., Hoshina, Y., Takenaka, S., Omiya, S., & Tsunematsu, K. (2015). The gamdam glacier inventory: A quality-controlled inventory of Asian glaciers. The Cryosphere, 9(3), 849–864. https://doi.org/10.5194/tc-9-849-2015

    Article  Google Scholar 

  • Pandit, A., & Ramsankaran, R. A. A. J. (2020). Modeling ice thickness distribution and storage volume of glaciers in Chandra Basin, western Himalayas. Journal of Mountain Science, 17(8), 2011–2022. https://doi.org/10.1007/s11629-019-5718-y

    Article  Google Scholar 

  • Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J. O., Hock, R., Kaser, G., Kienholz, C., & Miles, E. S. (2014). The Randolph Glacier Inventory: A globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552. https://doi.org/10.3189/2014JoG13J176

    Article  Google Scholar 

  • Prakash, S., Sharma, M. C., Sreekesh, S., Chand, P., Pandey, V. K., Latief, S. U., Deswal, S., Manna, I., Das, S., Mandal, S. T., & Bahuguna, I. M. (2021). Decadal terminus position changes and ice thickness measurement of Menthosa glacier in Lahaul region of north-western himalaya. Geocarto International, 37, 6422.

    Article  Google Scholar 

  • Prasad, V., Kulkarni, A. V., Pradeep, S., Pratibha, S., Tawde, S. A., Shirsat, T., Arya, A. R., Orr, A., & Bannister, D. (2019). Large losses in glacier area and water availability by the end of twenty-first century under high emission scenario, Satluj basin, Himalaya. Current Science, 116(10), 1721–1730.

    Article  Google Scholar 

  • Radić, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., & Cogley, J. G. (2014). Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics, 42(1–2), 37–58. https://doi.org/10.1007/s00382-013-1719-7

    Article  Google Scholar 

  • Ramsankaran, R. A. A. J., Pandit, A., & Azam, M. F. (2018). Spatially distributed ice-thickness modelling for Chhota Shigri Glacier in western Himalayas, India. International Journal of Remote Sensing, 39(10), 3320–3343.

    Article  Google Scholar 

  • Remya, S. N., Kulkarni, A. V., Pradeep, S., & Shrestha, D. G. (2019). Volume estimation of existing and potential glacier lakes, Sikkim Himalaya, India. Current Science, 116(4), 620–627.

    Article  Google Scholar 

  • Romshoo, S.A., Abdullah, T., & Bhat, M.H. (2021). Evaluation of the global glacier inventories and assessment of glacier elevation changes over north-western Himalaya. Earth System Science Data Discussions, pp 1–45.

  • Sahu, R., & Gupta, R. D. (2019). Surface Velocity Dynamics of Samudra Tapu Glacier, India from 2013 TO 2017 Using LANDSAT-8 Data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 75–81. https://doi.org/10.5194/isprs-annals-IV-5-W2-75-2019

    Article  Google Scholar 

  • Sellevold, M., & Kloster, K. J. E. L. L. (1964). Seismic measurements on the glacier Hardangerjøkulen, Western Norway. Norsk Polarinslitutt Arbok, 1964, 87–91.

    Google Scholar 

  • Singh, G., Nela, B. R., Bandyopadhyay, D., Mohanty, S., & Kulkarni, A. V. (2020). Discovering anomalous dynamics and disintegrating behaviour in glaciers of Chandra-Bhaga sub-basins, part of Western Himalaya using DInSAR. Remote Sensing of Environment, 246, 1–18.

    Article  Google Scholar 

  • Singh, K. K., Kulkarni, A. V., & Mishra, V. D. (2010). Estimation of glacier depth and moraine cover study using ground penetrating radar (GPR) in the Himalayan region. Journal of the Indian Society of Remote Sensing, 38(1), 1–9.

    Article  Google Scholar 

  • Singh, K. K., Negi, H. S., Gusain, H. S., Ganju, A., Singh, D. K., & Kulkarni, A. V. (2018). Temporal change and flow velocity estimation of Patseo glacier, Western Himalaya, India. Current Science, 114(4), 776–784.

    Article  Google Scholar 

  • Singh, K. K., Negi, H. S., & Singh, D. K. (2019). Assessment of glacier stored water in Karakoram Himalaya using satellite remote sensing and field investigation. Journal of Mountain Science, 16(4), 836–849. https://doi.org/10.1007/s11629-018-5121-0

    Article  Google Scholar 

  • Singh, S. K., Rathore, B. P., Bahuguna, I. M., Ramnathan, A. L., & Ajai. (2012). Estimation of glacier ice thickness using Ground Penetrating Radar in the Himalayan region. Current Science, 10, 68–73.

    Google Scholar 

  • Sun, Y., Jiang, L., Liu, L., Sun, Y., & Wang, H. (2017). Spatial-temporal characteristics of glacier velocity in the Central Karakoram revealed with 1999–2003 Landsat-7 ETM+ Pan Images. Remote Sensing, 9(10), 1064.

    Article  Google Scholar 

  • Swain, A. K., Mukhtar, M. A., Majeed, Z., & Shukla, S. P. (2018). Depth profiling and recessional history of the Hamtah and Parang glaciers in Lahaul and Spiti, Himachal Pradesh, Indian Himalaya. Geological Society, London, Special Publications, 462(1), 35–49.

    Article  Google Scholar 

  • Tawde, S. A., Kulkarni, A. V., & Bala, G. (2016). Estimation of glacier mass balance on a basin scale: An approach based on satellite-derived snowlines and a temperature index model. Current Science, 3, 1977–1989.

    Article  Google Scholar 

  • Tawde, S. A., Kulkarni, A. V., & Bala, G. (2017). An estimate of glacier mass balance for the Chandra basin, western Himalaya, for the period 1984–2012. Annals of Glaciology. https://doi.org/10.1017/aog.2017.18

    Article  Google Scholar 

  • Tiwari, R. K., Gupta, R. P., & Arora, M. K. (2014). Estimation of surface ice velocity of Chhota-Shigri glacier using sub-pixel ASTER image correlation. Current Science, 106, 853–859.

    Google Scholar 

  • Tripathi, N., Singh, S. K., Rathore, B. P., Oza, S. R., & Bahuguna, I. M. (2023). Topographical and morphological variability explicates the regional heterogeneity in glacier surface ice velocity across Karakoram-Himalaya. Remote Sensing Applications: Society and Environment, 29, 100892.

    Article  Google Scholar 

  • Van Pelt, W. J. J., Oerlemans, J., Reijmer, C. H., Pettersson, R., Pohjola, V. A., Isaksson, E., & Divine, D. (2013). An iterative inverse method to estimate basal topography and initialise ice flow models. The Cryosphere, 7, 987–1006. https://doi.org/10.5194/tc-7-987-2013

    Article  Google Scholar 

  • Yellala, A., Kumar, V., & Høgda, K. A. (2019). Bara Shigri and Chhota Shigri glacier velocity estimation in western Himalaya using Sentinel-1 SAR data. International Journal of Remote Sensing, 40(15), 5861–5874.

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted in the Divecha Centre for Climate Change (DCCC), Indian Institute of Science, Bengaluru. We thank DST-Centre for Excellence in Climate Change and DCCC for providing the necessary funds and support to carry out this research. Veena Prasad was involved in data curation.

Funding

This study was financed by DST-Centre for Excellence in Climate Change and Divecha Centre for Climate Change (DCCC), Indian Institute of Science, Bengaluru.

Author information

Authors and Affiliations

Authors

Contributions

JSG was involved in conceptualization, methodology, formal analysis, investigation, writing—original draft, visualization. AVK contributed to supervision, writing—review & editing, conceptualization, formal analysis.

Corresponding author

Correspondence to J. S. Gopika.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopika, J.S., Kulkarni, A.V. & Prasad, V. Glacier Volume Estimation Using Laminar-Flow and Volume–Area Scaling Techniques in the Chenab Basin. J Indian Soc Remote Sens 51, 1809–1823 (2023). https://doi.org/10.1007/s12524-023-01744-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01744-7

Keywords

Navigation