Skip to main content

Advertisement

Log in

A Comparison of Image-Based and Physics-Based Atmospheric Correction Methods for Extracting Snow and Vegetation Cover in Nepal Himalayas Using Landsat 8 OLI Images

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Applying atmospheric corrections on satellite images is an important step before using the satellite image for any further processing. These atmospheric corrections are broadly classified as either image-based or physics-based atmospheric corrections. From a plethora of such corrections, which is best suited for vegetation and snow mapping in the mountainous Himalayan region needs to be decided. Hence, in this work, we evaluated a total of eight atmospheric corrections models including 5 image-based namely DOS (dark object subtraction method), improved dark object subtraction method (DOS3), COST (cosine theta), apparent reflectance (Aref), QUAC (QUick Atmospheric Correction), and 3 physics-based methods, namely SIAC (Sensor Invariant Atmospheric Correction), 6SV (Second Simulation of the Satellite Signal in the Solar Spectrum) and FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes). We found that 6SV and FLAASH were better than other methods and QUAC was the worst performer when applied to Landsat 8 OLI images of the Nepal Himalayan region which has dense vegetation and snow-covered areas. The better snow reflectance values were observed for FLAASH (B, G, R: 0.88, 0.89, 0.9; NIR: 0.83), SIAC (B, G, R: 0.85, 0.89, 0.89; NIR: 0.83) and 6SV (B, G, R: 0.87, 0.89, 0.89; NIR: 0.8) methods, whereas the FLAASH and SIAC methods exhibited higher vegetation reflectance values in the NIR band than other methods. The spectra from the standard spectral library were compared with the values of vegetation and snow spectral reflectance produced from corrected reflectance images. The mean values of snow and vegetation reflectance were higher for FLAASH, 6SV, and SIAC methods as compared to other methods. Therefore, FLAASH, 6SV, and SIAC methods, in contrast to other used atmospheric correction methods, have a high possibility of giving accurate snow and vegetation cover mapping. The snow cover and vegetation cover map prepared using NDSI and NDVI showed that areas covered under thin clouds and haze were better extracted when FLAASH, SIAC, and 6SV methods are applied as compared to other methods. Thus, this study confirms that physics-based atmospheric correction models such as FLAASH, SIAC, and 6SV methods should be used while working on satellite images of the Himalayan region where the focus is on snow and vegetation cover mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andreassen, L. M., Paul, F., Kääb, A., & Hausberg, J. E. (2008). Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. The Cryosphere, 2(1), 131–145.

    Article  Google Scholar 

  • Asra, G. (1989). Theory and applications of optical remote sensing. in G. Asrar (Ed.) New York: Wiley.

  • Baisantry, M., Negi, S., & Manocha, O. P. (2012). Automatic relative radiometric normalization for change detection of satellite imagery. ACEEE International Journal on Information Technology, 2(2), 28–31.

    Google Scholar 

  • Barnas, A. F., Darby, B. J., Vandeberg, G. S., Rockwell, R. F., & Ellis-Felege, S. N. (2019). A comparison of drone imagery and ground-based methods for estimating the extent of habitat destruction by lesser snow geese (Anser caerulescens caerulescens) in La Pérouse Bay. PLoS ONE, 14(8), e0217049.

    Article  Google Scholar 

  • Basith, A., Nuha, M. U., Prastyani, R., & Winarso, G. (2019). Aerosol optical depth (AOD) retrieval for atmospheric correction in Landsat-8 imagery using second simulation of a satellite signal in the solar spectrum-vector (6SV). Communications in Science and Technology, 4(2), 68–73.

    Article  Google Scholar 

  • Basnet, K., Paudel, R. C., & Sherchan, B. (2019). Analysis of watersheds in Gandaki Province. Nepal Using QGIS. Technical Journal, 1(1), 16–28.

    Google Scholar 

  • Berk, A., Anderson, G. P., Bernstein, L. S., Acharya, P. K., Dothe, H., Matthew, M. W., & Hoke, M. L. (1999). MODTRAN4 radiative transfer modeling for atmospheric correction. In Optical spectroscopic techniques and instrumentation for atmospheric and space research III, 3756, 348–353.

    Google Scholar 

  • Bernstein, L. S., Adler-Golden, S. M., Sundberg, R. L., Levine, R. Y., Perkins, T. C., Berk, A., & Hoke, M. L. (2005). Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi-and hyperspectral imagery. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 5806, 668–678.

    Article  Google Scholar 

  • Bernstein, L. S., Jin, X., Gregor, B., & Adler-Golden, S. M. (2012). Quick atmospheric correction code: Algorithm description and recent upgrades. Optical Engineering, 51(11), 111719.

    Article  Google Scholar 

  • Bhambri, R., Bolch, T., & Chaujar, R. K. (2011). Mapping of debris-covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data. International Journal of Remote Sensing, 32(23), 8095–8119.

    Article  Google Scholar 

  • Burns, P., & Nolin, A. (2014). Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sensing of Environment, 140, 165–178.

    Article  Google Scholar 

  • Caselles, V., & Lopez Garcia, M. J. (1989). An alternative simple approach to estimate atmospheric correction in multitemporal studies. International Journal of Remote Sensing, 10(6), 1127–1134.

    Article  Google Scholar 

  • Chavez, P. S., Jr. (1989). Radiometric calibration of Landsat Thematic Mapper multispectral images. Photogrammetric Engineering and Remote Sensing, 55(9), 1285–1294.

    Google Scholar 

  • Chavez, P. S. (1996). Image-based atmospheric corrections-revisited and improved. Photogrammetric Engineering and Remote Sensing, 62(9), 1025–1035.

    Google Scholar 

  • Chen, W., Chen, W., & Li, J. (2010). Comparison of surface reflectance derived by relative radiometric normalization versus atmospheric correction for generating large-scale Landsat mosaics. Remote Sensing Letters, 1(2), 103–109.

    Article  Google Scholar 

  • Cooley, T., Anderson, G. P., Felde, G. W., Hoke, M. L., Ratkowski, A. J., Chetwynd, J. H., & Lewis, P. (2002). FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In IEEE international geoscience and remote sensing symposium, 3, 1414–1418.

    Google Scholar 

  • Crippen, R. E. (1988). The dangers of underestimating the importance of data adjustments in band ratioing. Remote Sensing, 9(4), 767–776.

    Article  Google Scholar 

  • Crippen, R. E. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 34(1), 71–73.

    Article  Google Scholar 

  • Cui, L., Li, G., Ren, H., He, L., Liao, H., Ouyang, N., & Zhang, Y. (2014). Assessment of atmospheric correction methods for historical Landsat TM images in the coastal zone: A case study in Jiangsu, China. European Journal of Remote Sensing, 47(1), 701–716.

    Article  Google Scholar 

  • Domenikiotis, C., Loukas, A., & Dalezios, N. R. (2003). The use of NOAA/AVHRR satellite data for monitoring and assessment of forest fires and floods. Natural Hazards and Earth System Sciences, 3(1/2), 115–128.

    Article  Google Scholar 

  • Eugenio, F., Marcello, J., Martin, J., & Rodríguez-Esparragón, D. (2017). Benthic habitat mapping using multispectral high-resolution imagery: Evaluation of shallow water atmospheric correction techniques. Sensors, 17(11), 2639.

    Article  Google Scholar 

  • Feister, U., & Grewe, R. (1995). Spectral albedo measurements in the UV and visible region over different types of surfaces. Photochemistry and Photobiology, 62(4), 736–744.

    Article  Google Scholar 

  • Gupta, S. K., & Shukla, D. P. (2020). Evaluation of topographic correction methods for LULC preparation based on multi-source DEMs and Landsat-8 imagery. Spatial Information Research, 28(1), 113–127.

    Article  Google Scholar 

  • Hall, F. G., Strebel, D. E., Nickeson, J. E., & Goetz, S. J. (1991). Radiometric rectification: Toward a common radiometric response among multidate, multisensor images. Remote Sensing of Environment, 35(1), 11–27.

    Article  Google Scholar 

  • Huete, A., Justice, C., & Van Leeuwen, W. (1999). MODIS vegetation index (MOD13). Algorithm Theoretical Basis Document, 3(213), 295–309.

    Google Scholar 

  • Jasrotia, A. S., Kour, R., & Ashraf, S. (2022). Impact of illumination gradients on the raw, atmospherically and topographically corrected snow and vegetation areas of Jhelum basin, Western Himalayas. Geocarto International. https://doi.org/10.1080/10106049.2022.2086629

    Article  Google Scholar 

  • Jensen, J. R. (2009). Remote sensing of the environment: An earth resource perspective 2/e. Pearson Education India.

  • Kaneko, E., Aoki, H., Tsukada, M. (2016). Image-based path radiance estimation guided by physical model. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) pp. 6942–6945. IEEE.

  • Kaufman, Y. J. (1989). The atmospheric effect on remote sensing and its correction. Theory and Application of Optical Remote Sensing, 336–428.

  • Kaufman, Y. J., & Holben, B. N. (1993). Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection. International Journal of Remote Sensing, 14(1), 21–52.

    Article  Google Scholar 

  • Kaushik, S., Joshi, P. K., & Singh, T. (2019). Development of glacier mapping in Indian Himalaya: A review of approaches. International Journal of Remote Sensing, 40(17), 6607–6634.

    Article  Google Scholar 

  • Kim, M., Heo, J. H., & Sohn, E. H. (2022). Atmospheric correction of true-color RGB imagery with limb area-blending based on 6S and satellite image enhancement techniques using geo-kompsat-2A advanced meteorological imager data. Asia-Pacific Journal of Atmospheric Sciences, 58(3), 333–352.

    Article  Google Scholar 

  • Lhissou, R., El Harti, A., Maimouni, S., & Adiri, Z. (2020). Assessment of the image-based atmospheric correction of multispectral satellite images for geological mapping in arid and semi-arid regions. Remote Sensing Applications: Society and Environment, 20, 100420.

    Article  Google Scholar 

  • Liou, K. N. (2002). An introduction to atmospheric radiation. Elsevier.

    Google Scholar 

  • López-Serrano, P. M., Corral-Rivas, J. J., Díaz-Varela, R. A., Álvarez-González, J. G., & López-Sánchez, C. A. (2016). Evaluation of radiometric and atmospheric correction algorithms for aboveground forest biomass estimation using Landsat 5 TM data. Remote Sensing, 8(5), 369.

    Article  Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2002). Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA research. International Journal of Remote Sensing, 23(13), 2651–2671.

    Article  Google Scholar 

  • Mahiny, A. S., & Turner, B. J. (2007). A comparison of four common atmospheric correction methods. Photogrammetric Engineering & Remote Sensing, 73(4), 361–368.

    Article  Google Scholar 

  • Mandanici, E., Franci, F., Bitelli, G., Agapiou, A., Alexakis, D., & Hadjimitsis, D. G. (2015). Comparison between empirical and physically based models of atmospheric correction. In Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Vol. 9535, pp. 110–119. SPIE.

  • Marcello, J., Eugenio, F., Perdomo, U., & Medina, A. (2016). Assessment of atmospheric algorithms to retrieve vegetation in natural protected areas using multispectral high-resolution imagery. Sensors, 16(10), 1624.

    Article  Google Scholar 

  • Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors, 7(11), 2636–2651.

    Article  Google Scholar 

  • Matthew, M. W., Adler-Golden, S. M., Berk, A., Felde, G., Anderson, G. P., Gorodetzky, D., Shippert, M. (2002). Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data. In Applied Imagery Pattern Recognition Workshop, 2002. Proceedings. pp. 157–163. IEEE.

  • McCord, T. B., Clark, R. N., Hawke, B. R., McFadden, L. A., Owensby, P. D., Pieters, C. M., & Adams, J. B. (1981). Moon: Near-infrared spectral reflectance, a first good look. Journal of Geophysical Research: Solid Earth, 86(B11), 10883–10892.

    Article  Google Scholar 

  • Susan Moran, M., Jackson, R. D., Slater, P. N., & Teillet, P. M. (1992). Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sensing of Environment, 41(2–3), 169–184. https://doi.org/10.1016/0034-4257(92)90076-V

    Article  Google Scholar 

  • Moravec, D., Komárek, J., López-Cuervo Medina, S., & Molina, I. (2021). Effect of atmospheric corrections on NDVI: Intercomparability of Landsat 8, Sentinel-2, and UAV sensors. Remote Sensing, 13(18), 3550.

    Article  Google Scholar 

  • Navalgund, R. R., Jayaraman, V., & Roy, P. S. (2007). Remote sensing applications: An overview. Current Science (00113891), 93(12), 1747–1766.

    Google Scholar 

  • Nazeer, M., Nichol, J. E., & Yung, Y. K. (2014). Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment. International Journal of Remote Sensing, 35(16), 6271–6291.

    Article  Google Scholar 

  • Pant, R. R., Zhang, F., Rehman, F. U., Wang, G., Ye, M., Zeng, C., & Tang, H. (2018). Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Science of the Total Environment, 622, 770–782.

    Article  Google Scholar 

  • Paolini, L., Grings, F., Sobrino, J. A., Jiménez Muñoz, J. C., & Karszenbaum, H. (2006). Radiometric correction effects in Landsat multi-date/multi-sensor change detection studies. International Journal of Remote Sensing, 27(4), 685–704.

    Article  Google Scholar 

  • Paul, F. (2000). Evaluation of different methods for glacier mapping using Landsat TM. EARSeL eProceedings, 1, 239–245.

    Google Scholar 

  • Peng, Y., He, G., Zhang, Z., Long, T., Wang, M., & Ling, S. (2016). Study on atmospheric correction approach of Landsat-8 imageries based on 6S model and look-up table. Journal of Applied Remote Sensing, 10(4), 045006.

    Article  Google Scholar 

  • Pettorelli, N. (2013). The normalized difference vegetation index. Oxford University Press.

    Book  Google Scholar 

  • Phillips, O. L. (1997). The changing ecology of tropical forests. Biodiversity & Conservation, 6(2), 291–311.

    Article  Google Scholar 

  • Price, J. C. (1987). Calibration of satellite radiometers and the comparison of vegetation indices. Remote Sensing of Environment, 21(1), 15–27.

    Article  Google Scholar 

  • Prosperi, P. (2012). Evaluation of a remote sensing based method for the assessment of agricultural crop residues on the soil surface. Tutor: S. Bocchi ; coordinatore G. Zocchi. - : . Universita' degli Studi di Milano, 2012 Feb 10. ((24. ciclo, Anno Accademico 2011. [10.13130/prosperi-paolo_phd2012-02-10].

  • Richards, J. A. (1993). Sources and characteristics of remote sensing image data. In J. A. Richards (Ed.), Remote Sensing Digital Image Analysis (pp. 1–37). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-88087-2_1

    Chapter  Google Scholar 

  • Richter, R. (1996). Atmospheric correction of satellite data with haze removal including a haze/clear transition region. Computers & Geosciences, 22(6), 675–681.

    Article  Google Scholar 

  • Sabins, F. F. (1987). Remote sensing--principles and interpretation. WH Freeman and company.

  • Schroeder, T. A., Cohen, W. B., Song, C., Canty, M. J., & Yang, Z. (2006). Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sensing of Environment, 103(1), 16–26.

    Article  Google Scholar 

  • Selkowitz, D. J., & Forster, R. R. (2016). An automated approach for mapping persistent ice and snow cover over high latitude regions. Remote Sensing, 8(1), 16.

    Article  Google Scholar 

  • Slater, P. N. (1985). Radiometric considerations in remote sensing. Proceedings of the IEEE, 73(6), 997–1011.

    Article  Google Scholar 

  • Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., & Macomber, S. A. (2001). Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote sensing of Environment, 75(2), 230–244.

    Article  Google Scholar 

  • Thorne, K., Markharn, B., Barker, P. S., & Biggar, S. J. P. E. (1997). Radiometric calibration of Landsat. Photogrammetric Engineering & Remote Sensing, 63(7), 853–858.

    Google Scholar 

  • Valdivieso-Ros, C., Alonso-Sarria, F., & Gomariz-Castillo, F. (2021). Effect of different atmospheric correction algorithms on sentinel-2 imagery classification accuracy in a semiarid mediterranean area. Remote Sensing, 13(9), 1770.

    Article  Google Scholar 

  • Vermote, E. F., Tanré, D., Deuze, J. L., Herman, M., & Morcette, J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675–686.

    Article  Google Scholar 

  • Wang, D., Ma, R., Xue, K., & Loiselle, S. A. (2019). The assessment of Landsat-8 OLI atmospheric correction algorithms for inland waters. Remote Sensing, 11(2), 169.

    Article  Google Scholar 

  • Wang, Z., Xia, J., Wang, L., Mao, Z., Zeng, Q., Tian, L., & Shi, L. (2018). Atmospheric correction methods for GF-1 WFV1 data in hazy weather. Journal of the Indian Society of Remote Sensing, 46(3), 355–366.

    Article  Google Scholar 

  • Xie, Y., Zhao, X., Li, L., Wang, H. (2010). Calculating NDVI for Landsat7-ETM data after atmospheric correction using 6S model: A case study in Zhangye city, China. In 2010 18th International Conference on Geoinformatics (pp. 1–4). IEEE.

  • Yin, F., Lewis, P. E., Gomez-Dans, J., Wu, Q. (2019). A sensor-invariant atmospheric correction method: Application to Sentinel-2/MSI and Landsat 8/OLI. EarthArXiv 2019. Preprint.

  • Yuan, D., & Elvidge, C. D. (1996). Comparison of relative radiometric normalization techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 51(3), 117–126.

    Article  Google Scholar 

Download references

Acknowledgements

The opportunity and technology resources for the authors to conduct this study are provided by IIT Mandi in Kamand, Himachal Pradesh, India. Additionally, we appreciate the USGS's Land Processes Distributed Active Archive Center (LP DAAC) for allowing us to use the Landsat 8 OLI datasets in this study. The authors are grateful for the anonymous reviewers' suggestions, which helped to refine the manuscript and make it more presentable.

Funding

This research article received no specific grant from any funding organization/ institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dericks Praise Shukla.

Ethics declarations

Conflict of interest

The authors claim that they have no known financial conflicts of interest or close personal relationships that would have affected the work presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Table 8.

Table 8 The gain and bias value used during DN to radiance conversion

Appendix 2

See Table 9.

Table 9 Snow spectral reflectance determined from eight different atmospheric correction methods along with the standard snow spectral reflectance taken from USGS library as provided in the ENVI spectral libraries

Appendix 3

See Table 10.

Table 10 Vegetation spectral reflectance determined from eight different atmospheric correction methods along with the standard vegetation spectral reflectance taken from USGS library as provided in the ENVI spectral libraries

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niraj, K.C., Gupta, S.K. & Shukla, D.P. A Comparison of Image-Based and Physics-Based Atmospheric Correction Methods for Extracting Snow and Vegetation Cover in Nepal Himalayas Using Landsat 8 OLI Images. J Indian Soc Remote Sens 50, 2503–2521 (2022). https://doi.org/10.1007/s12524-022-01616-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01616-6

Keywords

Navigation