Skip to main content
Log in

Soil Moisture Monitoring with Dual-Incidence-Angle RISAT-1 Data: A Pilot Study from Vidarbha Region

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Soil moisture is a crucial parameter in the estimation of crop yield, drought forecast, hydrological and climatic studies. Soil moisture retrieval from synthetic aperture radar data is yet to be operational due to difficulty in removing the influence of vegetation and roughness in the backscattering signal. This limitation is addressed in this study by a combination of lower and higher incidence angle RISAT-1 SAR data. Roughness was derived using a linear model prepared by correlating σ°high HH–σ°low HH with root mean square height of the ground roughness component. A new attempt is made to remove the influence of vegetation using a model prepared by integrating the radar vegetation index and normalized differential vegetation index. The derived soil moisture was validated with the ground-truth data with the R2 value of 0.62 and with the error of 5.4% (volumetrically).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal, A. (2014). Re: Farmers’ suicides in the Vidarbha region of Maharashtra, India: A qualitative exploration of their causes. Journal of Injury and Violence Research, 6(1), 53.

    Article  Google Scholar 

  • Al-Yaari, A., Wigneron, J. P., Ducharne, A., Kerr, Y. H., Wagner, W., De Lannoy, G., et al. (2014). Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land). Remote Sensing of Environment, 152, 614–626.

    Article  Google Scholar 

  • Attema, E. W. P., & Ulaby, F. T. (1978). Vegetation modelled as a water cloud. Radio Science, 13(2), 57–64.

    Article  Google Scholar 

  • Aubert, M., Baghdadi, N., Zribi, M., Douaoui, A., Loumagne, C., Baup, F., et al. (2011). Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust. Remote Sensing of Environment, 115(8), 1801–1810.

    Article  Google Scholar 

  • Baghdadi, N., Aubert, M., & Zribi, M. (2012). Use of TerraSAR-X data to retrieve soil moisture over bare soil agricultural fields. IEEE Geoscience and Remote Sensing Letters, 9(3), 512–516.

    Article  Google Scholar 

  • Baghdadi, N., Cerdan, O., Zribi, M., Auzet, V., Darboux, F., El Hajj, M., et al. (2008). Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: Application to hydrological and erosion modelling. Hydrological Processes, 22(1), 9–20.

    Article  Google Scholar 

  • Baghdadi, N. N., El Hajj, M., Zribi, M., & Fayad, I. (2016). Coupling SAR C-band and optical data for soil moisture and leaf area index retrieval over irrigated grasslands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(3), 1229–1243.

    Article  Google Scholar 

  • Baghdadi, N., Holah, N., & Zribi, M. (2006). Soil moisture estimation using multi-incidence and multi-polarization ASAR data. International Journal of Remote Sensing, 27(10), 1907–1920.

    Article  Google Scholar 

  • Baghdadi, N., King, C., Chanzy, A., & Wigneron, J. P. (2002). An empirical calibration of the integral equation model based on SAR data, soil moisture and surface roughness measurement over bare soils. International Journal of Remote Sensing, 23(20), 4325–4340.

    Article  Google Scholar 

  • Baghdadi, N., Saba, E., Aubert, M., Zribi, M., & Baup, F. (2011). Evaluation of radar backscattering models IEM, OH, and Dubois for SAR data in X-Band over bare soils. IEEE Geoscience and Remote Sensing Letters, 8(6), 1160–1164.

    Article  Google Scholar 

  • Baghdadi, N., & Zribi, M. (2006). Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. International Journal of Remote Sensing, 27(18), 3831–3852.

    Article  Google Scholar 

  • Barrett, B. W., Dwyer, E., & Whelan, P. (2009). Soil moisture retrieval from active spaceborne microwave observations: An evaluation of current techniques. Remote Sensing, 1(3), 210–242.

    Article  Google Scholar 

  • Charbonneau, F., Trudel, M., & Fernandes, R. (2005). Use of dual polarization and multi-incidence SAR for soil permeability mapping. In Proceedings of the 2005 Advanced synthetic aperture radar (ASAR) 2005, St-Hubert, Canada, 15–17 November 2005.

  • Choker, M., Baghdadi, N., Zribi, M., El Hajj, M., Paloscia, S., Verhoest, N. E., et al. (2017). Evaluation of the OH, Dubois and IEM backscatter models using a large dataset of SAR data and experimental soil measurements. Water, 9(1), 38.

    Article  Google Scholar 

  • Das, K., & Paul, P. K. (2015). Soil moisture retrieval model by using RISAT-1, C-band data in tropical dry and sub-humid zone of Bankura district of India. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 297–310.

    Article  Google Scholar 

  • De Roo, R. D., Du, Y., Ulaby, F. T., & Dobson, M. C. (2001). A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion. IEEE Transactions on Geoscience and Remote Sensing, 39(4), 864–872.

    Article  Google Scholar 

  • Dongre, A. R., & Deshmukh, P. R. (2012). Farmers’ suicides in the Vidarbha region of Maharashtra, India: A qualitative exploration of their causes. Journal of Injury and Violence Research, 4(1), 2.

    Article  Google Scholar 

  • Dubois, P. C., Van Zyl, J., & Engman, T. (1995). Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 915–926.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In Methods of soil analysis: Part 1Physical and mineralogical methods (pp. 383–411).

  • Gharechelou, S., Tateishi, R., & Sumantyo, J. T. S. (2015). Interrelationship analysis of L-band backscattering intensity and soil dielectric constant for soil moisture retrieval using PALSAR data. Advances in Remote Sensing, 4(01), 15.

    Article  Google Scholar 

  • Hajj, M. E., Baghdadi, N., Zribi, M., & Bazzi, H. (2017). Synergic use of Sentinel-1 and Sentinel-2 images for operational soil moisture mapping at high spatial resolution over agricultural areas. Remote Sensing, 9(12), 1292.

    Article  Google Scholar 

  • Hallikainen, M. T., Ulaby, F. T., Dobson, M. C., El-Rayes, M., & Wu, L. K. (1985). Microwave dielectric behavior of wet soil-part 1: Empirical models and experimental observations. IEEE Transactions on Geoscience and Remote Sensing, 1, 25–34.

    Article  Google Scholar 

  • Hillel, D. (1982). Introduction to soil physics (Vol. 364). New York: Academic Press.

    Google Scholar 

  • Kale, N. M., Khonde, S. R., & Mankar, D. M. (2014). Socio-economic, psychological and situational causes of suicides of farmers in Vidarbha region of Maharashtra. Karnataka Journal of Agricultural Sciences, 27(1), 40.

    Google Scholar 

  • Khabazan, S., Motagh, M., & Hosseini, M. (2013). Evaluation of radar backscattering models IEM, OH, and Dubois using L and C-bands SAR data over different vegetation canopy covers and soil depths. In ISPRS—International archives of the photogrammetry, remote sensing and spatial information sciences (pp. 225–230).

  • Kim, Y., Jackson, T., Bindlish, R., Lee, H., & Hong, S. (2012). Radar Vegetation Index for estimating the vegetation water content of rice and soybean. IEEE Geoscience and Remote Sensing Letters, 9(4), 564–568.

    Article  Google Scholar 

  • Kim, Y., & Van Zyl, J. (2004). Vegetation effects on soil moisture estimation. In Proceedings of geoscience and remote sensing symposium. IGARSS ‘04. . IEEE International (Vol. 2, pp. 800–802).

  • Kim, Y. J., & Van Zyl, J. (2009). A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2519–2527.

    Article  Google Scholar 

  • Kumar, S. D., Rao, S. S., & Sharma, J. R. (2013). Radar Vegetation Index as an alternative to NDVI for monitoring of soyabean and cotton. In Proceedings of the XXXIII INCA international congress (Indian Cartographer) (Vol. 19, p. 21).

  • Li, Y. Y., Zhao, K., Ren, J. H., Ding, Y. L., & Wu, L. L. (2014). Analysis of the dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: A case study of soda alkaline saline soils in Western Jilin Province using RADARSAT-2 data. The Scientific World Journal, 2014, 563015.

    Google Scholar 

  • Maurya, D. K., & Rao, P. V. N. (2014). Surface soil moisture estimation using passive microwave radiometer data. In Scientific report, NRSC (pp. 1–27).

  • Merzouki, A., McNairn, H., & Pacheco, A. (2011). Mapping soil moisture using RADARSAT-2 data and local autocorrelation statistics. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 128–137.

    Article  Google Scholar 

  • Mironov, V. L., Dobson, M. C., Kaupp, V. H., Komarov, S. A., & Kleshchenko, V. N. (2004). Generalized refractive mixing dielectric model for moist soils. IEEE Transactions on Geoscience and Remote Sensing, 42(4), 773–785.

    Article  Google Scholar 

  • NRSC, ISRO https://www.nrsc.gov.in/Remote_Sensing_Data_Policy?q=RISAT-1. Accessed 7 May 2019.

  • Oh, Y., Sarabandi, K., & Ulaby, F. T. (1992). An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 370–381.

    Article  Google Scholar 

  • Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., & Reppucci, A. (2013). Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment, 134, 234–248.

    Article  Google Scholar 

  • Panciera, R., Tanase, M. A., Lowell, K., & Walker, J. P. (2014). Evaluation of IEM, Dubois, and OH radar backscatter models using airborne L-band SAR. IEEE Transactions on Geoscience and Remote Sensing, 52(8), 4966–4979.

    Article  Google Scholar 

  • Pandey, D. K., Maity, S., Bhattacharya, B., & Misra, A. (2016). Model-based surface soil moisture (SSM) retrieval algorithm using multi-temporal RISAT-1 C-band SAR data. In Land surface and cryosphere remote sensing III (Vol. 9877, p. 98770X). International Society for Optics and Photonics.

  • Peters, J., Lievens, H., Baets, B. D., & Verhoest, N. E. C. (2012). Accounting for seasonality in a soil moisture change detection algorithm for ASAR wide swath time series. Hydrology and Earth System Sciences, 16(3), 773–786.

    Article  Google Scholar 

  • Ponnurangam, G. G., Jagdhuber, T., Hajnsek, I., & Rao, Y. S. (2016). Soil moisture estimation using hybrid polarimetric SAR data of RISAT-1. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2033–2049.

    Article  Google Scholar 

  • Rahman, M. M., Moran, M. S., Thoma, D. P., Bryant, R., Collins, C. H., Jackson, T., et al. (2008). Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sensing of Environment, 112(2), 391–402.

    Article  Google Scholar 

  • Rao, S. S., Das, S. N., Nagaraju, M. S. S., Venugopal, M. V., Rajankar, P., Laghate, P., et al. (2013). Modified Dubois model for estimating soil moisture with dual polarized SAR data. Journal of the Indian Society of Remote Sensing, 41(4), 865–872.

    Article  Google Scholar 

  • Sahebi, M. R., & Angles, J. (2010). An inversion method based on multi-angular approaches for estimating bare soil surface parameters from RADARSAT-1. Hydrology and Earth System Sciences, 14(11), 2355–2366.

    Article  Google Scholar 

  • Singh, D., & Kathpalia, A. (2007). An efficient modeling with GA approach to retrieve soil texture, moisture and roughness from ERS-2 SAR data. Progress in Electromagnetics Research, 77, 121–136.

    Article  Google Scholar 

  • Srivastava, H. S., Patel, P., & Navalgund, R. R. (2006). How far SAR has fulfilled its expectation for soil moisture retrieval. In Proceedings of SPIE (Vol. 6410, p. 641001).

  • Srivastava, H. S., Patel, P., Sharma, Y., & Navalgund, R. R. (2009). Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2528–2535.

    Article  Google Scholar 

  • Thapliyal, P. K., Pal, P. K., Narayanan, M. S., & Srinivasan, J. (2005). Development of a time series—based methodology for estimation of large-area soil wetness over india using IRS-P4 microwave radiometer data. Journal of Applied Meteorology, 44(1), 127–143.

    Article  Google Scholar 

  • Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3), 574–582.

    Article  Google Scholar 

  • Ulaby, F. T., Batlivala, P. P., & Dobson, M. C. (1978). Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part I—Bare soil. IEEE Transactions on Geoscience Electronics, 16(4), 286–295.

    Article  Google Scholar 

  • Ulaby, F. T., Moore, R. K., & Fung, A. K. (1982). Microwave remote sensing: Active and passive. Volume 2-Radar remote sensing and surface scattering and emission theory. https://ntrs.nasa.gov/search.jsp?R=19830032822

  • Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J. C., Bizzarri, B., Wigneron, J. P., et al. (2007). Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrology Research, 38(1), 1–20.

    Article  Google Scholar 

  • Yu, F., & Zhao, Y. (2011). A new semi-empirical model for soil moisture content retrieval by ASAR and TM data in vegetation-covered areas. Science China Earth Sciences, 54(12), 1955–1964.

    Article  Google Scholar 

  • Zhao, W., & Li, Z. L. (2013). Sensitivity study of soil moisture on the temporal evolution of surface temperature over bare surfaces. International Journal of Remote Sensing, 34(9–10), 3314–3331.

    Article  Google Scholar 

  • Zribi, M., & Dechambre, M. (2003). A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sensing of Environment, 84(1), 42–52.

    Article  Google Scholar 

  • Zribi, M., Kotti, F., Amri, R., Wagner, W., Shabou, M., Lili-Chabaane, Z., et al. (2014). Soil moisture mapping in a semiarid region, based on ASAR/Wide Swath satellite data. Water Resources Research, 50(2), 823–835.

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed under RISAT Utilization Project funded by Indian Space Research Organization (ISRO). The authors thank Dr. Milind R Wadodkar, Dr. S. N. Das, Dr. M. S. S. Nagaraju, Dr. M. V. Venugopal, Dr. Prashant Rajankar, Dr. Pankaj Laghate, Mr. M. Sivaprasad Reddy, Dr. Sudipta chattaraj and Dr. A. K. Joshi for their help in soil sample collection and analysis and their valuable advice in the field. Authors acknowledge Dr. M. R. Wadodkar, D. S. Mohekar—NBSS, Nitin Tendulkar, CICR, RRSC/NRSC, Ramteke, S. Verma-MRSAC, S. R. Potpite, J. P. Suman and Arun Kumar Rajwar—SLUSI for their help in soil sample analysis, ground-truth collection and process. The authors would like to thank the Director NRSC and Director NGRI for their support in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Sahadevan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahadevan, D.K., Rao, S.S. & Pandey, A.K. Soil Moisture Monitoring with Dual-Incidence-Angle RISAT-1 Data: A Pilot Study from Vidarbha Region. J Indian Soc Remote Sens 47, 1497–1506 (2019). https://doi.org/10.1007/s12524-019-00998-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-00998-4

Keywords

Navigation