Skip to main content
Log in

Phytoliths in spikelets of selected Oryzoideae species: new findings from in situ observation

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Rice has been one of the most important plant resources both in modern and ancient times. Research on the origin and domestication of rice is an important topic in archaeobotany; phytolith analysis has played a crucial role improving understanding of these issues. In this study, we collected 30 specimens including 28 Oryza (rice) species, 1 Leersia species, and 1 Zizania species to perform in situ observation of phytolith in different parts of the spikelet. In situ observation revealed that double-peaked phytoliths were derived from two nearby epidermal long cells and located various phytolith morphotypes in different parts of the spikelet. We found that the double-peaked phytoliths, Rondel tridentate and Rondel reniform distinguished specimens at genus level; the morphology and morphometry of double-peaked phytoliths distinguished rice specimens from different genomes; and higher amount of Fusiform echinate in the rachilla might reflect the non-shattering phenotype of rice within the AA genome. Our study adds detailed information regarding phytolith morphology and distribution, and provides new tools and insights for the future archaeobotanical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw materials of studied species and slides of phytoliths involved in this study can be found in the phytolith lab at the Institute of Geology and Geophysics, Chinese Academy of Sciences.

References

  • Ball T, Chandler-Ezell K, Dickau R, Duncan N, Hart TC, Iriarte J, Lentfer C, Logan A, Lu H, Madella M (2016) Phytoliths as a tool for investigations of agricultural origins and dispersals around the world. J Archaeol Sci 68:32–65

    Article  Google Scholar 

  • Ball T, Vrydaghs L, Mercer T, Pearce M, Snyder S, Lisztes-Szabó Z, Pető Á (2017) A morphometric study of variance in articulated dendritic phytolith wave lobes within selected species of Triticeae and Aveneae. Veg Hist Archaeobot 26:85–97

    Article  Google Scholar 

  • Bellwood P (2004) First farmers: the origins of agricultural societies. Blackwell, Malden (MA)

    Google Scholar 

  • Chen B, Zhang J, Lu H (1995) Discovery and significance of rice phytolith in Jiahu Neolithic Site, Henan Province. Chinese Sci Bull 40:339–342

    Google Scholar 

  • Deng Z, Hung H-C, Carson MT, Bellwood P, Yang S-L, Lu H (2018) The first discovery of Neolithic rice remains in eastern Taiwan: phytolith evidence from the Chaolaiqiao site. Archaeol Anthrop Sci 10:1477–1484

    Article  Google Scholar 

  • Fuller DQ, Qin L, Zheng Y, Zhao Z, Chen X, Hosoya LA, Sun GP (2009) The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science 323:1607–1610

    Article  Google Scholar 

  • Fuller DQ, Sato Y-I, Castillo C, Qin L, Weisskopf AR, Kingwell-Banham EJ, Song J, Ahn S-M, van Etten J (2010) Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol Anthrop Sci 2:115–131

    Article  Google Scholar 

  • Ge S, Sang T, Lu B-R, Hong D-Y (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci 96:14400–14405

    Article  Google Scholar 

  • Ge Y, Lu H, Zhang J, Wang C, Gao X, 2020 Phytoliths in inflorescence bracts: preliminary results of an investigation on common Panicoideae plants in China. Frontin Plant Sci 10.

  • Ge Y, Lu H, Zhang J, Wang C, He K, Huan X (2018) Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications. Archaeol Anthrop Sci 10:61–73

    Article  Google Scholar 

  • Gu YS, Zhao ZJ, Pearsall DM (2013) Phytolith morphology research on wild and domesticated rice species in East Asia. Quatern Int 287:141–148

    Article  Google Scholar 

  • Hilbert L, Neves EG, Pugliese F, Whitney BS, Shock M, Veasey E, Zimpel CA, Iriarte J (2017) Evidence for mid-Holocene rice domestication in the Americas. Nature Ecology & Evolution 1:1693–1698

    Article  Google Scholar 

  • Holst I, Moreno JE, Piperno DR (2007) Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths. Proc Natl Acad Sci 104:17608–17613

    Article  Google Scholar 

  • Huang F, Zhang M (2000) Pollen and phytolith evidence for rice cultivation during the Neolithic at Longqiuzhuang, eastern Jianghuai, China. Veg Hist Archaeobot 9:161–168

    Article  Google Scholar 

  • Jiang QH (1995) Searching for evidence of early rice agriculture at prehistoric sites in China through phytolith analysis - an example from central China. Rev Palaeobot Palyno 89:481–485

    Article  Google Scholar 

  • Jin G, Wu W, Zhang K, Wang Z, Wu X (2014) 8000-Year old rice remains from the north edge of the Shandong Highlands, East China. J Archaeol Sci 51:34–42

    Article  Google Scholar 

  • Kondo R (2010) Phytoliths images by scanning electron microscope - an introduction to phytoliths (in Japanese). Hokkaido University Press, Sapporo

    Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

    Article  Google Scholar 

  • Lu H, Wu N, Liu K (1997) Recognition of rice phytoliths. In: Pinilla A, Juan-Tresseras J, Machado J (eds) The state of the art of phytoliths in plants and soils. Monogra as del Centro de Ciencias Medambioentales, Madrid, pp 159–174

    Google Scholar 

  • Lu H, Yang X, Ye M, Liu KB, Xia Z, Ren X, Cai L, Wu N, Liu TS (2005) Culinary archaeology: millet noodles in Late Neolithic China. Nature 437:967–968

    Article  Google Scholar 

  • Lu H, Zhang J, Liu KB, Wu N, Li Y, Zhou K, Ye M, Zhang T, Zhang H, Yang X, Shen L, Xu D, Li Q (2009a) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci U S A 106:7367–7372

    Article  Google Scholar 

  • Lu H, Zhang J, Wu N, Liu KB, Xu D, Li Q (2009b) Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum). PLoS ONE 4:e4448

    Article  Google Scholar 

  • Lu HY, Liu ZX, Wu NQ, Berne S, Saito Y, Liu BZ, Wang L (2002) Rice domestication and climatic change: phytolith evidence from East China. Boreas 31:378–385

    Article  Google Scholar 

  • Luo W, Yang Y, Fang F, Li W, Hu F, Zhang J, Chen D, Yu L (2017) Chronology of ancient Dongxiang wild rice (Oryza rufipogon Griff.), and the morphologies of grains, double-peaked phytoliths, and starch, in the middle Yangtze river region, China. Rev Palaeobot Palyno 244:140–147

    Article  Google Scholar 

  • Luo W, Yang Y, Yao L, Chen Z, Li J, Yin C, Zhang J, Lin L, Gan H (2016) Phytolith records of rice agriculture during the Middle Neolithic in the middle reaches of Huai River region, China. Quatern Int 426:133–140

    Article  Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  Google Scholar 

  • Neumann K, Stromberg CAE, Ball T, Albert RM, Vrydaghs L, Cummings LS (2019) International Code for Phytolith Nomenclature (ICPN) 2.0. Ann Bot-London 124:189–199

    Article  Google Scholar 

  • Pearsall DM, Chandler-Ezell K, Chandler-Ezell A (2003) Identifying maize in neotropical sediments and soils using cob phytoliths. J Archaeol Sci 30:611–627

    Article  Google Scholar 

  • Pearsall DM, Piperno DR, Dinan EH, Umlauf R, Zhao ZJ, Benfer RA (1995) Distinguishing rice (Oryza-sativa Poaceae) from wild Oryza species through phytolith analysis - results of preliminary research. Econ Bot 49:183–196

    Article  Google Scholar 

  • Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira Press, Lanham

    Google Scholar 

  • Piperno DR, Holst I, Wessel-Beaver L, Andres TC (2002) Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proc Natl Acad Sci U S A 99:10923–10928

    Article  Google Scholar 

  • Piperno DR, Pearsall DM (1993) Phytoliths in the reproductive structures of maize and teosinte: implications for the study of maize evolution. J Archaeol Sci 20:337–362

    Article  Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci U S A 106:5019–5024

    Article  Google Scholar 

  • Rosen A, Weiner S (1994) Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. J Archaeol Sci 21:125–132

    Article  Google Scholar 

  • Soni SL, Parry DW (1973) Electron probe microanalysis of silicon deposition in the inflorescence bracts of the rice plant (Oryza sativa). Am J Bot 60:111

    Article  Google Scholar 

  • Tang SX, Zhang WX (2003) The ESM observation on tubercles on lemma in three species of wild rice existed in China. J Plant Genet Resour 4:134–135

    Google Scholar 

  • Tang SX, Zhang WX, Liu J (1999) The study on the bi-peak-tubercle on lemma of Hemudu and Luojiajiao ancient excavated rice grains with electric scanning microscope. Acta Agron Sin 25:320–327

    Google Scholar 

  • Terrell EE, Wergin WP (1981) Epidermal features and silica deposition in lemmas and awns of Zizania (Gramineae). Am J Bot 68:697–707

    Article  Google Scholar 

  • Terrell EE, Wergin WP, Renvoize SA (1983) Epidermal features of spikelets in Leersia (Poaceae). B Torrey Bot Club 110:423–434

    Article  Google Scholar 

  • Wang C, Lu H, Gu W, Wu N, Zhang J, Zuo X, Li F, Wang D, Dong Y, Wang S, Liu Y, Bao Y, Hu Y (2019) The development of Yangshao agriculture and its interaction with social dynamics in the middle Yellow River region, China. The Holocene 29:173–180

    Article  Google Scholar 

  • Wang J, Liu L, Ball T, Yu L, Li Y, Xing F (2016) Revealing a 5,000-y-old beer recipe in China. Proc Natl Acad Sci 113:6444–6448

    Article  Google Scholar 

  • Wang YJ, Lu HY (1993) The study of phytolith and its application. China Ocean Press, Beijing

    Google Scholar 

  • Wu Y, Jiang L, Zheng Y, Wang C, Zhao Z (2014) Morphological trend analysis of rice phytolith during the early Neolithic in the Lower Yangtze. J Archaeol Sci 49:326–331

    Article  Google Scholar 

  • Yoon J, Cho L-H, Antt HW, Koh H-J, An G (2017) KNOX Protein OSH15 induces grain shattering by repressing lignin biosynthesis genes. Plant Physiol 174:312–325

    Article  Google Scholar 

  • Yoshida S, Ohnishi Y, Kitagishi K (1962a) Histochemistry of silicon in rice plant. Soil Sci Plant Nutr 8:36–41

    Article  Google Scholar 

  • Yoshida S, Ohnishi Y, Kitagishi K (1962b) Histochemistry of silicon in rice plant: III. The presence of cuticle-silica double layer in the epidermal tissue. Soil Sci Plant Nutr 8:1–5

    Google Scholar 

  • Yost CL, Blinnikov MS (2011) Locally diagnostic phytoliths of wild rice (Zizania palustris L.) from Minnesota, USA: comparison to other wetland grasses and usefulness for archaeobotany and paleoecological reconstructions. J Archaeol Sci 38:1977–1991

    Article  Google Scholar 

  • Yost CL, Blinnikov MS, Julius ML (2013) Detecting ancient wild rice (Zizania spp. L.) using phytoliths: a taphonomic study of modern wild rice in Minnesota (USA) lake sediments. J Paleolimnol 49:221–236

    Article  Google Scholar 

  • Yu Y, Leyva P, Tavares RL, Kellogg EA (2020) The anatomy of abscission zones is diverse among grass species. Am J Bot 107:13

    Article  Google Scholar 

  • Zhang JP, Lu HY, Wu NQ, Li FJ, Yang XY, Wang WL, Ma MZ, Zhang XH (2010) Phytolith evidence for rice cultivation and spread in Mid-Late Neolithic archaeological sites in central North China. Boreas 39:592–602

    Google Scholar 

  • Zhang JP, Lu HY, Wu NQ, Yang XY, Diao XM (2011) Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis). PLoS ONE 6:e19726

    Article  Google Scholar 

  • Zhang WX (1995) The scanning-electricmicroscope observation of structure of bi-peak-tubercle on lemma of rice. Acta Agriculturae Universitatis Pekinensis 21:143–146

    Google Scholar 

  • Zhang WX (1999) Studies on chemical composition and structure of lemma in rice. Acta Agronomica Sinica 25:591–595

  • Zhang WX, Pei XD (1998) Studies on the bipeaked tubercles of lemma in rice. Acta Agron Sin 24:691–697

    Google Scholar 

  • Zhang WX, Tang SX (1997) Study on the tubercles of lemma in 20 species of Oryza with scanning-electric microscope. Acta Agron Sin 23:296–300

    Google Scholar 

  • Zhang WX, Wang LJ, Zhang FS, Tao DY, Hu FY, Wang YH (2002) Analysis on the structures of papilla of lemma in Oryza and Leersia. Chin J Rice Sci 16:277–280

    Google Scholar 

  • Zhao Z (1998) The Middle Yangtze region in China is one place where rice was domesticated: phytolith evidence from the Diaotonghuan Cave, Northern Jiangxi. Antiquity 72:885–897

    Article  Google Scholar 

  • Zhao Z, Piperno DR (2000) Late Pleistocene/Holocene environments in the middle Yangtze River Valley, China and rice (Oryza sativa L.) domestication: the phytolith evidence. Geoarchaeology 15:203–222

    Article  Google Scholar 

  • Zhao, Z., Wang, J., 2016. Identification and analysis of plant remains in Shuangdunyihao Tomb. Agric Archaeol 8.

  • Zhao ZJ, Pearsall DM, Benfer RA, Piperno DR (1998) Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II: Finalized method. Econ Bot 52:134–145

    Article  Google Scholar 

  • Zheng Y, Crawford GW, Jiang L, Chen X (2016) Rice domestication revealed by reduced shattering of archaeological rice from the Lower Yangtze valley. Sci Rep-Uk 6:28136

    Article  Google Scholar 

  • Zhou Y, Lu D, Li C, Luo J, Zhu B-F, Zhu J, Shangguan Y, Wang Z, Sang T, Zhou B (2012) Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell 24:1034–1048

    Article  Google Scholar 

  • Zuo X, Lu H, Li Z, Song B, Xu D, Zou Y, Wang C, Huan X, He K (2016) Phytolith and diatom evidence for rice exploitation and environmental changes during the early mid-Holocene in the Yangtze Delta. Quaternary Res 86:304–315

    Article  Google Scholar 

  • Zhao ZJ, Wang JH (2016) Identification and analysis of plant remains in Shuangdunyihao Tomb. Agricultural Archaeology 1:1–8

Download references

Acknowledgements

We thank Prof. Naiqin Wu and Dr. Jianping Zhang for the assistance on sampling from the specimen repository, Prof. Zhaoyan Gu for the assistance on sampling from Jiangsu Province, and Prof. Limi Mao for the assistance on sampling from Hainan Province during the sample collection.

Funding

This study was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41802021 and 41830322), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB26000000), the China Postdoctoral Science Foundation (Grant Nos. 2018M641480 and 2021T140654), the Shandong University Multidisciplinary Research and Innovation Team of Young Scholars (Grant No. 2020QNQT018), and the Young Taishan Scholars Program (Grant No. tsqn201909009).

Author information

Authors and Affiliations

Authors

Contributions

HL and YG designed the research. YG, CW, and XH performed the experiment. YG and ZD carried out the image process and data analysis. YG and HL wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yong Ge or Houyuan Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Lu, H., Wang, C. et al. Phytoliths in spikelets of selected Oryzoideae species: new findings from in situ observation. Archaeol Anthropol Sci 14, 73 (2022). https://doi.org/10.1007/s12520-022-01544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-022-01544-z

Keywords

Navigation