Skip to main content

Advertisement

Log in

Integrating dendrochronology and geomatics to monitor natural hazards and landscape changes

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

The monitoring of natural hazards is of extreme importance in the areas of Italy where there are high hydrogeological and avalanche risks. Despite the fact that records of past events are sometimes available, some of their data are often incomplete and show that the monitoring and mapping of these phenomena are never enough to avoid damage. We present the results of different studies where an integrated approach has been used by combining geomatics and dendrochronology techniques. In particular, we refer to case studies concerning avalanches, debris flows, natural reforestation in Italy and riverbed path changes in Albania. The position of all the plants sampled for dendrochronology was taken by GPS (Global Positioning System). The cartographic information used in these studies was provided by official sources from public organisations or processed by extracting them from aerial photographs or satellite imagery. With the Geographic Information System, it was possible to spatialise and analyse the information from dendrochronological sampling through the creation of multi-temporal morphological and potential risk maps showing the effects of the phenomena on forest cover. The GIS software used in these studies are GRASS, QGIS and IDRISI. The results showed that avalanches, debris flow, riverbed and landscape change can be studied effectively by integrating geomatics and dendrochronological techniques. This integration enabled spatial and temporal modelling, including the reconstruction of paths and volumes of past phenomena. The analysis of growth disturbances over time also enabled the reconstruction of the frequency of avalanches and debris flow activity over the last 50 years and, in some areas, over the last century. A detailed analysis of one of the avalanche tracks provided interesting results regarding the reconstruction of avalanche dynamics. Analysis of scars on buried stems of Pinus sylvestris also provided interesting results in terms of debris volume estimation. The dendrochronological reconstruction of the patterns of natural reforestation led to the determination of forest expansion rates that were used for modelling future scenarios and refining the changes of river morphology. Dendrochronology strongly improved the results of GIS satellite imagery analysis. These reconstructions are particularly important for the areas that are more exposed to the direct risk of avalanches, debris flows and floods in order to prevent the consequences of such phenomena in a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amos J (2017) Italy avalanche: a cruel coincidence. Science correspondent 19 January 2017 BBC News -Science & Environment. Available at: http://www.bbc.com/news/science-environment-38679129. Accessed 30 May 2017

  • Astrade L, Stoffel M, Corona C, Lopez-Saez J (2012) Using tree rings to study events and morphological changes: relevance, methods, and contribution of Alpine research to dendrogeomorphology. Géomorphologie 3:30–60

    Google Scholar 

  • Berger F (1995) Appréciation des potentialités d’avalanche sous couvert forestier. CEMAGREF, Grenoble

    Google Scholar 

  • Berger F, Chauvin C (1996) Cartographie des fonctions de protection de la forêt de montagne: appréciation des potentialités d’avalanches sous couvert forestier. Rev Géogr Lyon 71(2):137–145

    Article  Google Scholar 

  • Bezzi M (2006) Integrated analysis of natural hazards in mountain areas, PhD thesis, Università degli Studi di Trento, Dipartimento di Ingegneria Civile e Ambientale. 142 pp

  • Bezzi M, Cantiani MG, Ciolli M, Comunello G, Cherubini P (2003) Leggere gli anelli degli alberi per ricostruire la frequenza e l'estensione delle valanghe nel passato. De Angelis P, Macuz A, Bucci G, Scarascia Mugnozza G, eds. Viterbo:Società Italiana di Selvicoltura ed Ecologia Forestale, 2003. Vol. 3, p. 147–152. Atti del convegno: Alberi e foreste per il nuovo millennio, Viterbo, 15–18 Ottobre 2001

  • Bezzi M, Ciolli M, Comunello G, Cherubini P, Cantiani MG (2004) Integration of dendrochronology and GIS techniques to study avalanche phenomena. Geomatics workbooks, v. 3, http://geomatica.como.polimi.it/workbooks/n3/artic oli/mcmbmgcpcgc.pdf

  • Bonomi A. (2004) GRASS module for the analysis of the avalanche dynamic. Presented at the 10th congress INTERPRAEVENT, Riva del Garda, Italy, 25-27 May 2004

  • Buffoni D, Leoni D, Bortolamedi R (2003) L’eredità cartografica catastale degli Asburgo in forma digitale. Atti della 6a Conferenza Nazionale ASITA. Geomatica per l’Ambiente, il Territorio e il Patrimonio Culturale, Perugia, 5–8 November 2002 1:559–564

  • Butler DR, Malanson GP (1985) A reconstruction of snow-avalanche characteristics in Montana, U.S.A., using vegetative indicators. J Glaciol 31:185–187

    Article  Google Scholar 

  • Cherubini P, Piussi P, Schweingruber FH (1996) Spatiotemporal growth dynamics and disturbances in a subalpine spruce forest in the Alps: a dendroecological reconstruction. Can J For Res 26:991–1001

    Article  Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14

    Article  Google Scholar 

  • Ciolli M, Tabarelli S, Zatelli P (1998) 3D spatial data integration for avalanche risk management., international symposium on GIS - between visions and applications September 7-10 Stuttgart, Germany, 1998 international archives of photogrammetry and remote sensing vol. XXXI, part 4:121–127

  • Ciolli M, Tattoni C, Ferretti F (2012) Understanding forest changes to support planning: a fine-scale Markov chain approach. In: Jordán F, Jørgensen S (eds) Models of the ecological hierarchy from molecules to the ecosphere. Elsevier, Great Britain, pp 341–359. Developments in Environmental Modelling; 25. https://doi.org/10.1016/B978-0-444-59396-2.00021-3

    Google Scholar 

  • Comunello G, Bezzi M, Cherubini P, Ciolli M, Cantiani MG (2001) Conoscere il passato per interpretare il presente. Tecniche GIS e di dendrocronologia applicata per lo studio di aree potenzialmente soggette al rischio di valanghe. EM Linea Ecologica 4:58–62

    Google Scholar 

  • Congedo L (2017) SCP Semi-Automatic Classification Plugin (SCP) Available at: https://fromgistors.blogspot.com/p/semi-automatic-classification-plugin.html?spref=sacp. Accessed 31 May 2017

  • Corona C, Lopez Saez J, Stoffel M, Bonnefoy M, Richard D, Astrade L, Berger F (2012) How much of the real avalanche activity can be captured with tree rings? An evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Reg Sci Technol 74-75:31–42. https://doi.org/10.1016/j.coldregions.2012.01.003

    Article  Google Scholar 

  • Cukalla M (2009) Study on small scale mining in Albania: improving transparency, economics and financial issues, and health and safety impacts for Erzen river, Technical report, World Bank

  • Decaulme A, Eggertsson O, Saemundsson B (2012) A first dendrogeomorphologic approach of snow avalanche magnitude-frequency in Northern Iceland. Geomorphology 167-168:35–44. https://doi.org/10.1016/j.geomorph.2011.11.017

    Article  Google Scholar 

  • Díez-Herrero A, Ballesteros JA, Ruiz-Villanueva V, Bodoque JM (2013) A review of dendrogeomorphological research applied to flood risk analysis in Spain. Geomorphology 196:211–220. https://doi.org/10.1016/j.geomorph.2012.11.028

    Article  Google Scholar 

  • Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks

  • Dorren LKA, Seijmonsbergen AC (2003) Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology 56:49–64

    Article  Google Scholar 

  • Dorren LKA, Berger F, Putters US (2006) Real size experiments and 3D simulation of rockfall on forested and non-forested slopes. Nat Hazards Earth Syst Sci 6:145–153

    Article  Google Scholar 

  • Dorren LKA, Berger F, Jonsson M, Krautblatter M, Mölk M, Stoffel M, Wehrli A (2007) State of the art in rockfall – forest interactions. Schweiz Z Forstwes 158(6):128–141

    Article  Google Scholar 

  • Eastman JR (2006) Idrisi Andes. Clark University, Worcester

    Google Scholar 

  • Ferretti F, Sboarina C, Tattoni C, Vitti A, Zatelli P, Geri F, Pompei E, Ciolli M (2018) The 1936 Italian Kingdom Forest Map reviewed: a dataset for landscape and ecological research. Ann Silv Res 42(1):3–19. https://doi.org/10.12899/asr-1411

    Google Scholar 

  • Gallerani G, Pradella C (2016) Indagine dendrocronologica sui boschi in neo-formazione. Report for Applied Ecology course, University of Trento 15 pp.

  • Horton P, Jaboyedoff M, Rudaz B, Zimmermann M (2013) Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Nat Hazards Earth Syst Sci 13:869–885. https://doi.org/10.5194/nhess-13-869-2013

    Article  Google Scholar 

  • Jakob M, Holm K, Weatherly H, Liu S, Ripley N (2013) Debris flood risk assessment for Mosquito Creek, British Columbia, Canada. Nat Hazards 65(3):1653–1681. https://doi.org/10.1007/s11069-012-0436-6

    Article  Google Scholar 

  • Johnson B (2014) Effects of pansharpening on vegetation indices. ISPRS Int J Geo-Inf 3(2):507–522

    Article  Google Scholar 

  • Laitempergher G, Cantiani MG, Ciolli M, Bezzi M, Canals J (2004) Tree rings as tools to reconstruct past debris flow. Presented at the 10th congress INTERPRAEVENT, Riva del Garda, Italy, 25-27 May 2004

  • Moos C, Dorren LKA, Stoffel M (2017) Quantifying the effect of forests on frequency and intensity of rockfalls (2017). Nat Hazards Earth Syst Sci 17(2):291–304. https://doi.org/10.5194/nhess-17-291-2017

    Article  Google Scholar 

  • Neteler M, Bowman H, Landa M, Metz M (2012) GRASS GIS: a multi-purpose open source GIS. Environ Model Softw 31:124–130

    Article  Google Scholar 

  • Piussi P. (1992). Carta del limite potenziale del bosco in Trentino. Servizio Foreste Caccia e Pesca della Provincia Autonoma di Trento, Trento, Italy

  • Pop OT, Gavrilă I-G, Roşian G, Meseşan F, Decaulne A, Holobâcă IH, Anghel T (2016) A century-long snow avalanche chronology reconstructed from tree-rings in Parâng Mountains (Southern Carpathians, Romania) Quatern Int 415:230-240. https://doi.org/10.1016/j.quaint.2015.11.058

  • Procter E, Bollschweiler M, Stoffel M, Neumann M (2011) A regional reconstruction of debris-flow activity in the Northern Calcareous Alps, Austria. Geomorphology 132(1–2):41–50. https://doi.org/10.1016/j.geomorph.2011.04.035

    Article  Google Scholar 

  • Quantum GIS Development Team (2017). Quantum GIS Geographic Information System. Available at: http://www.qgis.org. Accessed 31 May 2017

  • Rammer W, Brauner M, Dorren LKA, Berger F, Lexer MJ (2010) Evaluation of a 3-D rockfall module within a forest patch model. Nat Hazards Earth Syst Sci 10:699–711

    Article  Google Scholar 

  • Rayback SA (1998) A dendrogeomorophological analysis of snow avalanches in the Colorado Front Range, USA. Phys Geogr 6:502–515

    Article  Google Scholar 

  • Salm B (1966) Contribution to avalanche dynamics. International Association of Scientific Hydrology Publication 69 (Symposium at Davos 1965 - Scientific Aspects of Snow and Ice Avalanches), pp 199-214

  • Santilli M, Pelfini M (2002) Dendrogeomorphology and dating of debris flows in the Valle del Gallo Central Alps, Italy. Dendrochronologia 20(3):269–284

    Article  Google Scholar 

  • Santilli M, Pelfini M, Citterio M, Turri S (2005) Landscape history in the subalpine karst region of Moncodeno (Lombardy prealps, Northern Italy). Dendrochronologia 23:19–27

    Article  Google Scholar 

  • Schöne BR, Schweingruber FH (2001) Dendrochronological studies of natural reforestation of the Alps exemplified on an Inner-alpine dry Valley (Ramosch, Lower Engadine, Switzerland). Bot Helv 111(2):151–168

    Google Scholar 

  • Schraml K, Thomschitz B, McArdell B, Graf C, Hungr O, Kaitna R (2015) Modeling debris-flow runout pattern on a forested alpine fan with different dynamic simulation models. In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory - volume 2. Landslide Processes. Taylor & Francis, London, pp 1673–1676

    Google Scholar 

  • Schweingruber FH (1988) Tree rings, basics and applications of dendrochronology. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  • Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38

    Google Scholar 

  • Scotton P, Genevois R, Moro F, Zorzi L, Girardi G, Praticelli N (2011) The debris-flows monitoring system of acquabona torrent (Cortina d’Ampezzo, Belluno, Italy) International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, pp. 595-603. https://doi.org/10.4408/IJECE.2011-03.B-065

  • Shroder JF (1980) Dendrogeomorphology: review and new techniques of tree-ring dating. Prog Phys Geogr 4:161–188

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research - an overview. Nat Hazards Earth Syst Sci 8(2):187–202

    Article  Google Scholar 

  • Stoffel M, Lièvre I, Comus D, Grichting MA, Raetzo H, Gärtner HW, Monbaron M (2005) 400 years of debris-flow activity and triggering weather conditions: Ritigraben, Valais, Switzerland. Arct Antarct Alp Res 37(3):387–395

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M, Butler DR, Luckman BH (2010) Tree rings and natural hazards: a state-of-art. Advances in Global Change Research 41, Springer Science & Business Media. 2010,505pp

  • Szymczak S, Bollschweiler M, Stoffel M, Dikau R (2010) Debris-flow activity and snow avalanches in a steep watershed of the Valais Alps (Switzerland): dendrogeomorphic event reconstruction and identification of triggers. Geomophology 116:107–114. https://doi.org/10.1016/j.geomorph.2009.10.012

    Article  Google Scholar 

  • Takahashi T, Ashida K, Swai K (1981) Delineation of debris flow hazard areas. Erosion and sediment transport in Pacific rim steeplands. Int Assoc Hydrol Sci Pub 132:589–603

    Google Scholar 

  • Tattoni C, Ciolli M, Ferretti F (2011) The fate of priority areas for conservation in protected areas: a fine-scale Markov chain approach. Environ Manag 47(2):263–278. https://doi.org/10.1007/s00267-010-9601-4

    Article  Google Scholar 

  • Tattoni C, Ianni E, Geneletti D, Zatelli P, Ciolli M (2017) Landscape changes, traditional ecological knowledge and future scenarios in the Alps: a holistic ecological approach. Sci Total Environ 579:27–36. https://doi.org/10.1016/j.scitotenv.2016.11.075

    Article  Google Scholar 

  • TSAP by RINNTECH e.K. Available at: http://www.rinntech.de/index-52147.html. Accessed 30 May 2017

  • Tumajer J, Treml V (2015) Reconstruction ability of dendrochronology in dating avalanche events in the Giant Mountains, Czech Republic. Dendrochronologia 34:1–9. https://doi.org/10.1016/j.dendro.2015.02.002

    Article  Google Scholar 

  • Voiculescu M, Onaca A (2014) Spatio-temporal reconstruction of snow avalanche activity using dendrogeomorphological approach in Bucegi Mountains Romanian Carpathians. Cold Reg Sci Technol 104-105:63–75. https://doi.org/10.1016/j.coldregions.2014.04.005

    Article  Google Scholar 

  • Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren LKA, Gerber W, Jaboyedoff M (2011) Rockfall characterisation and structural protection – a review. Nat Hazards Earth Syst Sci 11:2617–2651

    Article  Google Scholar 

  • Winchester V, Gärtner H, Bezzi M (2007) Dendrogeomorphological applications, Geomorphological Variations pp 183–203

  • Zolezzi G, Besio G, Bezzi M, Chesini A, Costi M, Dalla Valle L, De Leo F, Dotto A, Ferronato N, Gallerani G, Gobbi S, Guirreri D, Maier A, Pedon F, Spada D, Tosi T, Vella E, Beqiri E, Caka A, Cekrezi B, Fufaj F, Gjini B, Haxhi N, Kraja X, Omeri A, Shyti M, Zhidro M, Floqi T, Lami I (2016) Erosione costiera e gestione fluviale in un paese emergente: baia di Lalzi, Albania. Atti XXXV Convegno di Idraulica e Costruzioni Idrauliche, pp. 1215-1218, Bologna, 15-16 Settembre. ISBN – 9788898010400

Download references

Acknowledgements

We would like to thank the anonymous reviewers who helped us to improve the manuscript, Nickolas Vilday, who proofread the first version of the document and Margaret Smith, who proofread the last version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ciolli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciolli, M., Bezzi, M., Comunello, G. et al. Integrating dendrochronology and geomatics to monitor natural hazards and landscape changes. Appl Geomat 11, 39–52 (2019). https://doi.org/10.1007/s12518-018-0236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-018-0236-0

Keywords

Navigation