Skip to main content

Advertisement

Log in

Understanding the geochemical evolution of groundwater in Central Gujarat, India: an integrated hydrogeochemical and multivariate statistical approach

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In the present study, the geochemical origin of groundwater of Viswamitri River Basin (VRB), Gujarat, is established by integrating the different types of hydrogeochemical investigations and multivariate statistical techniques. Here, both natural and anthropogenic activities induce the hydrogeo-chemical origin of groundwater. Geochemistry of groundwater is primarily regulated by the evaporation process as confirmed by Gibbs diagram. X–Y scatter plots indicate that the source of major cations in groundwater is the weathering of rock and/or soil. The SI values of hematite, dolomite, and goethite depict an oversaturated state, and therefore, the groundwater of VRB is incapable of dissolving any additional amount of that mineral. The plots of Piper trilinear diagram, expanded Durov diagram, Langelier and Ludwig diagram, box-whisker plots, and R-mode HCA reveal that the dominant facies, covering 648 sq. km of the study area, is saline water facies. The high concentration of these major ions is primarily associated with the processes like cation exchange, mineral dissolution in the aquifer system as proved by the saturation indices and Giggenbach triangle. The stable isotopic signature of the groundwater of VRB point towards evaporation as the primary process accompanied simultaneously by precipitation during the formation of groundwater. Climate change, alteration in land use, anthropogenic activities, surface water infiltration, and social evolution all have an impact on groundwater resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AMSL:

Above mean sea level

APHA:

American Public Health Association

CA:

Cluster analysis

CGWB:

Central groundwater board

DIIRMS:

Dual Inlet Isotope Ratio Mass Spectrometer

EC:

Electrical conductivity

GMWL:

Global meteoric water line

HCA:

Hierarchical cluster analysis

IAEA:

International Atomic Energy Agency

IUCN:

International Union for Conservation of Nature

LMWL:

Local meteoric water line

MCM:

Million cubic meter

NIH:

National Institute of Hydrology

TDS:

Total dissolved solid

USGS:

United States Geological Survey

VRB:

Viswamitri River Basin

VSMOW:

Vienna Standard Mean Ocean Water

WQI:

Water quality index

References

  • Abid K, Hadj AF, Weise S, Zouari K, Chkir N, Rozanski K, Osenbrück K (2014) Geochemistry and residence time estimation of groundwater from Miocene-Pliocene and Upper Cretaceous aquifers of Southern Tunisia. Quaternary International J 338:59–70

    Article  Google Scholar 

  • Adhikary PP, Chandrasekharan H, Chakraborty D, Kumar B, Yadav BR (2009) Statistical approaches for hydrogeochemical characterization of groundwater in West Delhi. India Environ Monit Assess 154:41–52

    Article  Google Scholar 

  • Ahmad S, Mazhar SN (2020) Hydrochemical Characteristics, groundwater quality and sources of solute in the Ramganga Aquifer, Central Ganga Plain, Bareilly District, Uttar Pradesh. J Geol Soc India 95:616–625. https://doi.org/10.1007/s12594-020-1488-y

    Article  Google Scholar 

  • Ahmad S, Umar R, Arshad I (2019) Groundwater quality appraisal and its hydrogeochemical characterization — Mathura City, Western Uttar Pradesh. J Geol Soc India 94:611–623. https://doi.org/10.1007/s12594-019-1368-5

    Article  Google Scholar 

  • Alberto WD, Del PDM, Valeria AM, Fabiana PS, Cecilia HA, De Los ABM (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba-Argentina). Water Res, 35, 2881–2894. https ://doi.org/https://doi.org/10.1016/S0043 -1354(00)00592 -3

  • Ali J, Kazi TG, Tuzen M, Ullah N (2017) Evaluation of mercury and physicochemical parameters in different depths of aquifer water of Thar coalfield, Pakistan. Environ Sci Pollut Res, 1–10.

  • APHA (2012) American Public Health Association Standard methods for the examination of water and waste water, 22nd edn. DC, American Public Health Association, Washington

    Google Scholar 

  • Appelo C, Postma D (2005) Geochemistry, Groundwater, and Pollution, 2nd edn. CRC Press, London

    Google Scholar 

  • Aris AZ, Abdullah H, Ahmed A, Woong KK (2007) Controlling factors of groundwater hydrochemistry in a small island’s aquifer. Inter J Env Sci Tech 4:441–450

    Article  Google Scholar 

  • Arshad N, Imran S (2017) Assessment of arsenic, fluoride, bacteria, and other contaminants in drinking water sources for rural communities of Kasur and other districts in Punjab. Pakistan Environ Sci Pollut Res 24(3):2449–2463

    Article  Google Scholar 

  • Ayenew T, Shimeles F, Frank W, Molla D, Stefan W (2009) Hierarchical cluster analysis of Hydrochemical data as a tool for assessing the evolution and dynamics of groundwater across the Ethiopian rift. Int J Phy Sci 4:76–90

    Google Scholar 

  • Baig JA, Kazi TG, Arain MB, Afridi HI, Kandhro GA, Sarfraz RA, Shah AQ (2009) Evaluation of arsenic and other physicochemical parameters of surface and groundwater of Jamshoro. Pakistan J Hazard Mater 166(2):662–669

    Article  Google Scholar 

  • Bucher K, Stober I (2010) Fluids in the upper continental crust. Geofluids. https://doi.org/10.1111/j.1468-8123.2010.00279.x

    Article  Google Scholar 

  • Burdon DJ, Mazloum S (1958) Some chemical types of groundwater from Syria. UNESCO Symposium, Teheran, pp. 73–90.

  • Çadraku HS (2021) Groundwater Quality Assessment for irrigation: case study in the Blinaja River Basin, Kosovo. Civil Engineering Journal, 7 (9), 1515–1528. http://dx.doi.org/https://doi.org/10.28991/cej-2021-03091740

  • CGWB (2014) Central Groundwater Board, Ground Water Brochure Gandhinagar District Gujarat. Technical Report, West Central Region, Ahmedabad, Government of India. pp.3–10.

  • Das CR, Das S, Panda S (2022) Groundwater quality monitoring by correlation, regression and hierarchical clustering analyses using WQI and PAST tools. Groundw Sustain Dev 16:100708. https://doi.org/10.1016/j.gsd.2021.100708

    Article  Google Scholar 

  • Datta PS, Tyagi SK (1996) Major ion chemistry of groundwater in the Delhi area; chemical weathering process and groundwater flow regime. J Geol Soc India 47:179–188

    Google Scholar 

  • Daud MK, Nafees M, Ali S, Rizwan M, Bajwa RA (2017) Drinking water quality status and contamination in Pakistan. Biomed Res Intl.

  • Farhat S, Bali M, Kamel F (2019) Geochemical and statistical studies of Mio-Pliocene aquifer’s mineralization in Jerba Island, South-eastern Tunisia. Physics and Chemistry of the Earth, https://doi.org/10.1016/j.pce.2019.03.006

  • Farid I, Trabelsi R, Zouari K, Abid K, Ayachi M (2013) Hydrogeochemical processes affecting groundwater in an irrigated land in Central Tunisia. Environmental Earth Sciences J 68(5):1215–1231

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2010) The bivariate statistical analysis of environmental (compositional) data. Science of Total Environment 408:4230–4238. https://doi.org/10.1016/j.scitotenv.2010.05.011

    Article  Google Scholar 

  • Foster S, Loucks DP (Eds.) (2006) Non-renewable groundwater resources: a guidebook on socially-sustainable management for water policymakers, IHP-VI Ser. Groundwater 10, U. N. Educ., Sci. and Cultural Organ., Paris.

  • Freeze RA, Cherry JA (1979) Groundwater: Prentice-Hall.

  • Garrels RM, Christ CL (1965) Solutions, minerals, and equilibria. Harper and Row, New York

    Google Scholar 

  • Ghazanfar H, Saleem S, Naseem S, Ghazanfar A, Khattak UK (2017) Safe drinking water and sanitary measures: a cross-sectional study in a peri-urban community of Islamabad. JPMA J Pak Med Assoc 67(2):220

    Google Scholar 

  • Gibbs RJ (1970) Mechanism controlling world’s water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria - derivation of Na-KMg- Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3

    Article  Google Scholar 

  • Guler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeo J 10:455–474

    Article  Google Scholar 

  • Guo H, Wang Y (2004) Hydrogeochemical processes in shallow quaternary aquifers from the northern part of the Datong basin. China Appl Geochem 19:19–27

    Article  Google Scholar 

  • Hao Y, Cao B, Chen X, Yin J, Sun R, Yeh TCJ (2012) A piecewise grey system model for study the effects of anthropogenic activities on karst hydrological processes. Water Resour Manage 27(5):1207–1220. https://doi.org/10.1007/s11269-012-0231-x

    Article  Google Scholar 

  • Hegeu H, Kshetrimayum KS (2019) Hydrochemical characterization of groundwater in geomorphic units using graphical and multivariate statistical methods in the Dimapur valley, Northeast India. Groundw Sustain Dev 8:484–500. https://doi.org/10.1016/j.gsd.2019.01.004

    Article  Google Scholar 

  • Hem JD (1991) Study and interpretation of the chemical characteristics of natural water: USGS Professional Paper Book 2254. Scientific Publishers, Jodhpur

    Google Scholar 

  • Hou D, O’Connor D, Nathanail P, Tian L, Ma Y (2017) Integrated GIS and multivariate statistical analysis for regional-scale assessment of heavy metal soil contamination: a critical review. Environ Pollut 231:1188–1200. https://doi.org/10.1016/j.envpol.2017.07.021

    Article  Google Scholar 

  • Houria B, Mahdi K, Zohra TF (2020) Hydrochemical Characterisation of groundwater quality: Merdja Plain (Tebessa Town, Algeria). Civil Engineering Journal, 6 (2), 318–325. http://dx.doi.org/https://doi.org/10.28991/cej-2020-03091473

  • Islam ARMT, Shen S, Bodrud-Doza M (2017a) Assessment of arsenic health risk and source apportionment of groundwater pollutants using multivariate statistical techniques in Chapai-Nawabganj district. Bangladesh J Geol Society India 90(2):239–248

    Article  Google Scholar 

  • Islam ARMT, Shen S, Bodrud-Doza M, Rahman SM (2017b) Assessing irrigation water quality in Faridpur district of Bangladesh using several indices and statistical approaches. Arab J Geosci 10:418. https://doi.org/10.1007/s12517-017-3199-2

    Article  Google Scholar 

  • Jamshidzadeh Z, Barzi MT (2018) Groundwater quality assessment using the potability water quality index (PWQI): a case in the Kashan plain. Central Iran Environ Earth Sci 77(3):59

    Article  Google Scholar 

  • Kebede S, Travi Y, Alemayehu T, Ayenew T (2005) Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River. Ethiophia Appl Geochem 20:1658–1676

    Article  Google Scholar 

  • Kerich EC (2020) Households drinking water sources and treatment methods options in a regional irrigation scheme. Journal of Human, Earth, and Future, 1 (1), 10–19. https://doi.org/10.28991/HEF-2020-01-01-02

  • Khan MMA, Raj K, Rak AAE et al (2021) Stable isotope evidence on mechanisms and sources of groundwater recharge in quaternary aquifers of Kelantan. Malaysia Arabian Journal of Geosciences 14(1615):1–11. https://doi.org/10.1007/s12517-021-07646-7

    Article  Google Scholar 

  • Khanoranga S, Khalid, (2018) An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. J Geochem Explor 197:14–26. https://doi.org/10.1016/j.gexplo.2018.11.007

    Article  Google Scholar 

  • Kim JH, Kim RH, Lee J, Cheong TJ, Yum BW, Chang HW (2005) Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje. South Korea, Hydrological Process J 19:1261–1276

    Article  Google Scholar 

  • Kraiem Z, Zouari K, Bencheikh N, Agoun A, Abidi B (2014) Processus de minéralisation de la nappe du Plio-Quaternaire dans la plaine de Segui-Zograta (Sud-Ouest tunisien). Hydrological Sciences J 60(3):534–548. https://doi.org/10.1080/02626667.2013.877587

    Article  Google Scholar 

  • Krishan G, Singh S, Kumar CP, Gurjar S, Ghosh NC (2016) Assessment of water quality index (WQI) of groundwater in Rajkot District, Gujarat, India. Journal of Earth Science & Climatic Change 7:3. https://doi.org/10.4172/2157-7617.1000341

    Article  Google Scholar 

  • Kshetrimayum KS (2015) Hydrochemical evaluation of shallow groundwater aquifers: a case study from a semiarid Himalayan foothill river basin. Northwest India Environ Earth Sci 74:7187

    Article  Google Scholar 

  • Kshetrimayum KS, Heizule H (2016) The state of toxicity and cause of elevated Iron and Manganese concentrations in surface and groundwater around Naga Thrust of Assam-Arakan basin. Northeastern India Environ Earth Sci 75:1–14

    Google Scholar 

  • Kumar M, Das A, Das N, Goswami R, Singh UK (2016) Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, Northeastern India. Chemosphere 150:227–238

    Article  Google Scholar 

  • Kumar M, Herbert R, Ramanathan AL, Rao MS, Deka JP, Kumar B (2013) Hydrogeochemical zonation for groundwater management in the area with diversified geological and land-use setup. Geochemistry 73:267–274

    Article  Google Scholar 

  • Kumar M, Rao MS, Deka JP, Ramanathan AL, Kumar B (2015) Integrated hydrogeochemical, isotopic and geomorphological depiction of the groundwater salinization in the aquifer system of Delhi. India, Journal of Asian Earth Sciences 111:936–947

    Article  Google Scholar 

  • Kumar P, Singh CK, Saraswat C, Mishra B, Sharma T (2017) Evaluation of aqueous geochemistry of fluoride enriched groundwater: a case study of the Patan district, Gujarat, Western India. Water Science 31:215–229

    Article  Google Scholar 

  • Kynčlová P, Hron K, Filzmoser P (2017) Correlation between compositional parts based on symmetric balances. Math Geosci 49:777–796. https://doi.org/10.1007/s11004-016-9669-3

    Article  Google Scholar 

  • Lachaal F, Bédir M, Tarhouni J, Leduc C (2010) Hydrodynamic and hydrochemical changes affecting groundwater in a semi-arid region: the deep Miocene aquifers of the Tunisian Sahel (central east Tunisia). IAHS Publ, 340, 374–381. IAHS Press, Wallingford, UK.

  • Langelier WF, Ludwig HF (1942) Graphic method for indicating the mineral character of natural water. J Am Water Works Assoc 34:335–352

    Article  Google Scholar 

  • Langer P (2020) Groundwater mining in contemporary urban development for European spa towns. Journal of Human, Earth, and Future, 1 (1), 1–9. https://doi.org/10.28991/HEF-2020-01-01-01

  • Leduc C, Pulido-Bosch A, Remini B (2017) Anthropization of groundwater resources in the Mediterranean region: processes and challenges. Hydrogeol J 25(6):1529–1547. https://doi.org/10.1007/s10040-017-1572-6

    Article  Google Scholar 

  • Li P, Tian R, Xue C, Wu J (2017) Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Pollut Res 24(15):13224–13234

    Article  Google Scholar 

  • Lloyd JW (1965) The hydrochemistry of the Northeastern Jordan. J Hydrol 3:319–330

    Article  Google Scholar 

  • Lloyd JW, Heathcoat JA (1985) Natural inorganic hydrochemistry in relation to groundwater, an introduction. Clarendon Press, Oxford

    Google Scholar 

  • Ma B, Jin M, Liang X, Li J (2017) Groundwater mixing and mineralization processes in a mountain–oasis–desert basin, northwest China: hydrogeochemistry and environmental tracer indicators. Hydrogeol J. https://doi.org/10.1007/s10040-017-1659-0

    Article  Google Scholar 

  • Majidano A, Khan S, Sodhokhoso N, Memon S, Qureshi S (2017) Physicochemical study of drinking water of taluka Mirwah and KotDiji from District Khairpur Mir’s. Sindh University Research Journal-SURJ 49(3):499–504

    Article  Google Scholar 

  • McKenna JE Jr (2003) An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environ Model Softw 18(3):205–220

    Article  Google Scholar 

  • Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from Butucatu aquifer in Sao State, Brazil. J Hydrol, 250, 78–97. https ://doi.org/https://doi.org/10.1016/S0022 -1694(01)00423 -1

  • Mohanty AK, Rao VSSG (2019) Hydrogeochemical, seawater intrusion and oxygen isotope studies on a coastal region in the Puri District of Odisha, India. CATENA 172:558–571

    Article  Google Scholar 

  • Moni SA, Satter GS, Reza AHMS et al (2019) Hydrochemistry and arsenic contamination of shallow aquifers in Bidyananda and Nazimkhan Unions, Rajarhat Upazilla, Kurigram, Bangladesh. J Geol Soc India 94:395–404. https://doi.org/10.1007/s12594-019-1327-1

    Article  Google Scholar 

  • Naseem S, Hamza S, Bashir E (2010) Groundwater geochemistry of Winder agricultural farms, Balochistan, Pakistan and assessment for irrigation water quality. Eur Water 31:21–32

    Google Scholar 

  • Nencetti A, Tassi F, Vaselli O, Macías JL, Magro G, Capaccioni B, Minissale A, Mora JC (2005) Chemical and isotopic study of thermal springs and gas discharges from Sierra de Chiapas. Mexico Geofísica Internacional 44(1):39–48

    Article  Google Scholar 

  • Nnorom IC, Ewuzie U, Eze SO (2019) Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in Southeastern Nigeria. Heliyon 5(1):e01123. https://doi.org/10.1016/j.heliyon.2019.e01123

    Article  Google Scholar 

  • Okofo LB, Bedu-Addo K, Martienssen M (2022) Characterization of groundwater in the ‘Tamnean’ Plutonic Suite aquifers using hydrogeochemical and multivariate statistical evidence: a study in the Garu-Tempane District, Upper East Region of Ghana. Appl Water Sci 12(22):1–22. https://doi.org/10.1007/s13201-021-01559-2

    Article  Google Scholar 

  • Pastén-Zapata E, Ledesma-Ruiz R, AldoI. Ramírez TH, Mahlknecht J, (2014) Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Sci Total Environ 470–471:855–864

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Am Geophys Union Trans 25:914–923

    Article  Google Scholar 

  • Pisciotta A, Tiwari AK, Maio MD (2018) An integrated multivariate statistical analysis and hydrogeochemical approaches to identify the major factors governing the chemistry of water resources in a mountain region of northwest Italy. Carbonates Evaporites 34:955–973. https://doi.org/10.1007/s13146-018-0452-z

    Article  Google Scholar 

  • Raju NJ, Shukla UK, Ram P (2011) Hydrogeochemistry for the assessment of groundwater quality in Varanasi: a fast-urbanizing center in Uttar Pradesh. India Environ Monit Assess 173:279–300

    Article  Google Scholar 

  • Rakotondrabe F, Ngoupayou JRN, Mfonka Z, Rasolomanana EH, Abolo AJN, Ako AA (2018) Water quality assessment in the Betare-Oya gold mining area (East-Cameroon): multivariate statistical analysis approach. Sci Total Environ 610:831–844

    Article  Google Scholar 

  • Rasool A, Xiao T, Farooqi A, Shafeeque M, Liu Y, Kamran MA, Eqani SAMAS (2017) Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab. Pakistan Environ Geochem Hlth J 39(4):847–863

    Article  Google Scholar 

  • Re V, Sacchi E, Kammoun S, Tringali C, Trabelsi R, Zouari K, Daniele S (2017) Integrated socio hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia basin (Tunisia). Sci Total Environ 593–594:664–676. https://doi.org/10.1016/j.scitotenv.2017.03.151

    Article  Google Scholar 

  • Reimann C, Filzmoser P (2000) Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ Geol 39:1001–1014. https://doi.org/10.1007/s002549900081

    Article  Google Scholar 

  • Reimann C, Fabian K, Flem B, Schilling J, Roberts D, Englmaier P (2016) Pb concentrations and isotope ratios of soil O and C horizons in Nord-Trøndelag, Central Norway: anthropogenic or natural sources? Appld Geochem 74:56–66. https://doi.org/10.1016/j.apgeochem.2016.09.002

    Article  Google Scholar 

  • Reimann C, Fabian K, Schilling J, Roberts D, Englmaier P (2015a) A strong enrichment of potentially toxic elements (PTEs) in Nord Trøndelag (central Norway) forest soil. Sci Total Environ 536:130–141. https://doi.org/10.1016/j.scitotenv.2015.07.032

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Fabian K, Hron K, Birke M, Demetriades A, Dinelli E, Ladenberger A, Gemas Project Team (2012) The concept of compositional data analysis in practise – total major element concentrations in agricultural and grazing land soils of Europe. Sci Total Environ 426:196–210. https://doi.org/10.1016/j.scitotenv.2012.02.032

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Hron K, Kynèlová P, Garrett RG (2017) A new method for correlation analysis of compositional (environmental) data – a worked example. Sci Total Environ 607–608:965–971. https://doi.org/10.1016/j.scitotenv.2017.06.063

    Article  Google Scholar 

  • Reimann C, Schilling J, Roberts D, Fabian K (2015b) A regional scale geochemical survey of soil O and C horizon samples in Nord-Trøndelag, Central Norway: geology and mineral potential. Appld Geochem 61:192–205. https://doi.org/10.1016/j.apgeochem.2015.05.019

    Article  Google Scholar 

  • Ristuccia GM, Bonfanti P, Giammanco S, Stella G (2019) Assessment of the geochemical potential in a complex tectonic environment of South-east Sicily: new insights from hydrochemical data. Frontiers in Earth Science, 7 (88). DOI: https://doi.org/10.3389/feart.2019.00088

  • Ruiz-Pico A, Cuenca AP, Agila RS, Criollo DM, Piedra JL, Campos JS (2019) Hydrochemical characterization of groundwater in the Loja Basin (Ecuador). Appl Geochem. https://doi.org/10.1016/j.apgeochem.2019.02.008

    Article  Google Scholar 

  • Sahu P, Sikdar PK (2008) Hydrochemical framework of the aquifer in and around East Calcutta Wetlands, West Bengal. India Environ Geol 55(4):823–835

    Article  Google Scholar 

  • Sahu P, Sikdar PK, Chakraborty S (2016) Geochemical evolution of groundwater in southern Bengal Basin: The example of Rajarhat and adjoining areas, West Bengal. India J Earth Syst Sci 125:129–145

    Article  Google Scholar 

  • Sanford WE, Pope JP (2010) Current challenges using models to forecast seawater intrusion: lessons from the Eastern Shore of Virginia, USA. Hydrogeology J 18(1):73–93

    Article  Google Scholar 

  • Sarin MM, Krishnaswamy S, Somayajulu DBLK, Moore WS (1989) Major ion chemistry of the Ganga-Brahmaputra River system; weathering processes and fluxes to the Bay of Bengal. Geochim Cosmochim Acta 53:997–1009

    Article  Google Scholar 

  • Schoeller H (1965) Qualitative evaluation of groundwater resources. In: Methods and Techniques of groundwater investigation and development. Water Research Series, vol 33. UNESCO, Paris

  • Schoeller H (1967) Geochemistry of groundwater. In: An international guide for research and practice. UNESCO, Paris, Ch. 15, pp 1–18.

  • Shaji E, Gómez-Alday J, Hussein S et al (2018) Salinization and deterioration of groundwater quality by nitrate and fluoride in the Chittur Block, Palakkad, Kerala. J Geol Soc India 92:337–345. https://doi.org/10.1007/s12594-018-1017-4

    Article  Google Scholar 

  • Siddha S, Sahu P (2018) Assessment of groundwater potential of Gandhinagar Region, Gujarat. Journal of Geological Society of India 91:91–98. https://doi.org/10.1007/s12594-018-0824-y

    Article  Google Scholar 

  • Siddha S, Sahu P (2020a a) Assessment of Groundwater Quality and Associated Human Health Risk of Central Gujarat, India. Clean – Soil, Air, Water, 48, 2000056. https://doi.org/10.1002/clen.2020a00056

  • Siddha S, Sahu P (2020b) b) A statistical approach to study the evolution of groundwater of Vishwamitri River Basin (VRB), Gujarat. Journal of Geological Society of India 95:503–506. https://doi.org/10.1007/s12594-020-1468-2

    Article  Google Scholar 

  • Sikdar PK, Sahu P (2009) Understanding wetland sub-surface hydrology using geologic and isotopic signatures. Hydrol Earth Syst Sci 13:1313–1323

    Article  Google Scholar 

  • Singh AK, Mondal GC, Singh TB, Singh S, Tewary BK, Sinha A (2012) Hydrogeochemical processes and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Environ Earth Sci, 67(8), 2175–2191. https ://doi.org/https://doi.org/10.1007/s1266 5–012–1658–3

  • Singh KP, Malik A, Singh VK, Mohan D, Sinha S (2005) Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, north India. Anal Chim Acta, 550, 82–92. https ://doi.org/https://doi.org/10.1016/j.aca.2005.06.056

  • Srivastava SK (2019) Assessment of groundwater quality for the suitability of irrigation and its impacts on crop yields in the Guna district, India. Agric Water Manag 216:224–241

    Article  Google Scholar 

  • Stallard RE, Edmond JM (1983) Geochemistry of Amazon River: the influence of the geology and weathering environment on the dissolved load. J Geophys Res 88:9671–9688

    Article  Google Scholar 

  • Subba Rao N, Subrahmanyam A, Kumar SR, Srinivasulu N, Babu Rao G, Surya Rao P, Venkatram Reddy G (2012) Geochemistry and quality of groundwater of Gummanampadu sub-basin, Guntur District, Andhra Pradesh, India. Environ Earth Sci 67:1451–1471. https://doi.org/10.1007/s12665-012-1590-6

    Article  Google Scholar 

  • Todd DK (1980) Groundwater hydrology. Wiley, New York

    Google Scholar 

  • Trabelsi R, Abid K, Zouari K, Yahyaoui H (2012) Groundwater salinization processes in the shallow coastal aquifer of Djeffara plain of Medenine, Southeastern Tunisia. Environmental Earth Sciences 66:641–653

    Article  Google Scholar 

  • Trabelsi R, Zairi M, Smida H, Ben Dhia H (2005) Salinisation des nappes côtières: cas de la nappe nord du Sahel de Sfax. Tunisie Compt Rendus Geosci 337:515–524

    Article  Google Scholar 

  • Trabelsi R, Zouari K (2019) Coupled geochemical modeling and multivariate statistical analysis approach for the assessment of groundwater quality in irrigated areas: a study from North-Eastern of Tunisia. Groundw Sustain Dev 8:413–427. https://doi.org/10.1016/j.gsd.2019.01.006

    Article  Google Scholar 

  • Trojan MD, Malone JS, Stockinger JM, Eid EP, Lahtinen MJ (2003) Effects of land use on ground water quality in the Anoka Sand Plain Aquifer of Minnesota. Ground Water 41(4):482–492. https://doi.org/10.1111/j.1745-6584.2003.tb02382.x

    Article  Google Scholar 

  • Turksoy VA, Deniz S, Tutkun L et al (2019) Evaluation of the sources of Yozgat Fountain water in terms of seasonal distribution, Turkey. J Geol Soc India 94:538–544. https://doi.org/10.1007/s12594-019-1352-0

    Article  Google Scholar 

  • Upadhyaya D, Survaiya MD, Basha S, Mandal SK, Thorat RB, Haldar S et al (2014) Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. Environ Sci Pollut Res 21:3880–3890. https://doi.org/10.1007/s11356-013-2376-4

    Article  Google Scholar 

  • Zheng Y, Chen T, He J (2008) Multivariate geostatistical analysis of heavy metals in top soils from Beijing. China Jour Soils and Sediments 8:51–58. https://doi.org/10.1065/jss2007.08.245

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Central Groundwater Board, Ahmadabad, Gujarat Water Resource Development Corporation, Gandhinagar, Gujarat Laboratory, Ahmadabad, and National Institute of Hydrology, Roorkee, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulami Sahu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Broder J. Merkel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddha, S., Sahu, P. Understanding the geochemical evolution of groundwater in Central Gujarat, India: an integrated hydrogeochemical and multivariate statistical approach. Arab J Geosci 15, 1117 (2022). https://doi.org/10.1007/s12517-022-10386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10386-x

Keywords

Navigation