Skip to main content
Log in

Some rock mass, chemical, physical, thermal, and mechanical properties of Mardin limestone, Turkey

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Mardin limestones have been one of the most widely used building materials in the city of Mardin of Turkey from antiquity to current day. These historical structures are listed within the United Nations Educational, Scientific and Cultural Organization (UNESCO)’s World Heritage Tentative List. Despite the widespread use of this limestone, the physical and mechanical parameters had not been investigated in detail. In this study, some rock mass, chemical, thermal, physical, and mechanical properties of Mardin limestone were investigated. Although the physical properties are not satisfactory, strength properties satisfy the international usage standards. Therefore, it can be claimed that Mardin limestone has great industrial potential as construction and covering stone in arid and hot climatic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adin H (2000) Mardin ve Midyat’ta kullanilan bina yapi taslarinin bazi fiziksel ozellikleri (in Turkish). Muhendis ve Makina 48(570):13–17

    Google Scholar 

  • ASTM C170 M-16 (2016) Standard test method for compressive strength of dimension stone, ASTM International, USA

  • ASTM C241 M-15 (2015) Standard test method for abrasion resistance of stone subjected to foot traffic, ASTM International, USA

  • ASTM C568 M-15 (2015) Standard specification for limestone dimension stone, ASTM International, USA

  • ASTM C886–98 (2015) Standard test method for scleroscope hardness testing of carbon and graphite materials, ASTM International, USA

  • ASTM C97 M-15 (2015) Standard test methods for absorption and bulk specific gravity of dimension stone, ASTM International, USA

  • ASTM D1635 M-12 (2012) Standard test method for flexural strength of soil-cement using simple beam with third-point loading, ASTM International, USA

  • ASTM D2216 M-10 (2010) Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass, ASTM International, USA

  • ASTM D3967–08 (2008) Standard test method for splitting tensile strength of intact rock core specimens, ASTM International, USA

  • ASTM D5312 M-12 (2013) Standard test method for evaluation of durability of rock for erosion control under freezing and thawing conditions, ASTM International, USA

  • ASTM D7012 M-14 (2014) Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures, ASTM International, USA

  • ASTM D7263 M-09 (2009) Standard test methods for laboratory determination of density (unit weight) of soil specimens, ASTM International, USA

  • Azzoni A, Bailo F, Rondena E, Zanietti A (1996) Assessment of texture coefficient for different rock types and correlation with uniaxial compressive strength and rock weathering. Rock Mech Rock Eng 29(1):39–46

    Article  Google Scholar 

  • Bednarik M, Moshammer B, Heinrich M, Holzer R, Laho M, Uhlir C, Unterwurzacher M, Julia R (2014) Engineering geological properties of Leitha Limestone from historical quarries in Burgenland and Styria, Austria. Eng Geol 176:66–78

    Article  Google Scholar 

  • Benavente D, Garcia del Cura MA, Fort R, Ordonez S (2004) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127

    Article  Google Scholar 

  • Bernd F, Kurt H (2005) Kartierung und Bewertung von Verwitterungsschaden an Natursteinbauwerken (in German). Z Dtsch Ges Geowiss 21:7–24

    Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications. John Wiley and Sons, New York, p 237

    Google Scholar 

  • Blows JF, Carey PJ, Poole AB (2003) Preliminary investigations into Caen stone in the UK; its use weathering and comparison with repconvection stone. Build Environ 38:1143–1149

    Article  Google Scholar 

  • Brotons V, Tomas R, Ivorra S, Alarcon JC (2013) Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng Geol 167:117–127

    Article  Google Scholar 

  • Cicek F (2008) Mardin tasinin ozellikleri ve yapi malzemesi olarak kullanilmasi (in Turkish), MSc Thesis, Harran University, Sanliurfa-Turkey

  • Devos A, Sosson C, Lejeune O, Fronteau G (2005) Role des contextes geomorphologique et geologique dans l'abandon des carrieres de pierre du Lutetien autour de Reims (in French). International symposium “Pierres du patrimoine europeen: Economie de la pierre de l'Antiquite a la fin du XVIIIe siecle en Europe”, 18–21 Octobre 2005, Chateau-Thierry, 64

  • Freire-Lista DM, Fort R (2019) Historical city centres and traditional building stones as heritage: the Barrio de las Letras, Madrid (Spain). Geoheritage 11(1):71–85

    Article  Google Scholar 

  • Fronteau G, Moreau C, Thomachot-Schneider C, Barbin V (2010) Variability of some Lutetian building stones from the Paris Basin, from characterisation to conservation. Eng Geol 115:158–166

    Article  Google Scholar 

  • Gomez-Heras M, McCabe S, Smith BJ, Fort R (2009) Impacts of fire on stone-built heritage. J Archit Conserv 15(2):47–48

    Article  Google Scholar 

  • Kaufmann O, Quinif Y (1999) Cover-collapse sinkholes in the “Tournaisis” area, southern Belgium. Eng Geol 52:15–22

    Article  Google Scholar 

  • Lam dos Santos JP, Rosa LG, Amaral PM (2011) Temperature effects on mechanical behavior of engineered stones. Constr Build Mater 25:171–174

    Article  Google Scholar 

  • Maras EE, Caniberk M, Odabas MS, Degerli B, Maras SS, Maras HH (2016) An evaluation of the relationship between physical/mechanical properties and mineralogy of landscape rocks as determined by hyperspectral reflectance. Arab J Geosci 9(164):1–10

    Google Scholar 

  • Murru A, Freire-Lista DM, Fort R, Varas-Muriel MJ, Meloni P (2018) Evaluation of post-thermal shock effects in Carrara marble and Santa Caterina di Pittinuri limestone. Constr Build Mater 186:1200–1211

    Article  Google Scholar 

  • Onenc DI, Kiral N, Erkanol D, Tullukcu A (2006) Medeniyetlerin Tasi “Mardin Tasi” ve Ozellikleri (in Turkish), 59. Turkiye Jeoloji Kurultayi Bildirileri, Ankara, Turkey

  • Ozcelik Y, Ozguven A (2014) Water absorption and drying features of different natural building stones. Constr Build Mater 63:257–270

    Article  Google Scholar 

  • Ozcelik Y, Tercan AE, Yılmazkaya E, Ciccu R, Costa G (2011) A study of nozzle angle in stone surface treatment with water jets. Constr Build Mater 25(11):4271–4278

    Article  Google Scholar 

  • Ozguven A, Ozcelik Y (2013) Investigation of some property changes of natural building stones exposed to fire and high heat. Constr Build Mater 38:813–821

    Article  Google Scholar 

  • Ozguven A, Ozcelik Y (2014) Effects of high temperature on physico-mechanical properties of Turkish natural building stones. Eng Geol 183:127–136

    Article  Google Scholar 

  • Ozisik MN (1985) Heat transfer-a basic approach, McGraw Hill, ISE editions, ISBN 13: 9780070479821, New York, USA

  • Roels S, Carmeliet J, Hens H (2000) Microscopic analysis of imbibition processes in oolitic limestone. Geophys Res Lett 27:3533–3536

    Article  Google Scholar 

  • Sariisik A, Sariisik G (2011) Environmental interaction properties of marbles used in the restoration of historical monuments (Dalyan-Kaunos). Ekoloji 79:12–19

    Google Scholar 

  • Semerci F (2008) Mardin kirectasinin yapi tasi olarak arastirilmasi (in Turkish), MSc Thesis, Istanbul Technical University, Istanbul-Turkey

  • Sharma PK, Khandelwal M, Singh TN (2007) Variation on physico-mechanical properties of Kota stone under different watery environments. Build Environ 42:4117–4123

    Article  Google Scholar 

  • Singh TN, Singh SK, Mishra A, Singh PK, Singh VK (1999) Effect of acidic water on physico-mechanical behaviour of rock. Indian J Eng Mater Sci 6:66–72

    Google Scholar 

  • Striegel MF, Guin EB, Hallett K, Sandoval D, Swingle R, Knox K, Best F, Fornea S (2003) Convection pollution, coatings, and cultural resources. Prog Org Coat 58:281–288

    Article  Google Scholar 

  • Tercan AE, Ozcelik Y (2006) Canonical ridge correlation of mechanical and engineering index properties. Int J Rock Mech Min Sci 43:58–65

    Article  Google Scholar 

  • TS 1910 (2005) Dogal yapi taslari-natural facing stone (in Turkish), Turk Standartlari Enstitusu, Ankara, Turkey

  • TSMS (2016) Turkish State Meteorological Service, https://mgm.gov.tr/

  • Turgut P, Yesilnacar MI, Bulut H (2008) Physico-thermal and mechanical properties of Sanliurfa limestone, Turkey. Bull Eng Geol Environ 67:485–490

    Article  Google Scholar 

  • Ulusay R, Sonmez H (2002) Kaya kutlelerinin muhendislik ozellikleri (in Turkish), TMMOB Jeoloji Muhendisleri Odasi Yayinlari, No: 60, Ankara

  • UNESCO (2019) https://whc.unesco.org/en/tentativelists/state=tr

  • Vasanelli E, Colangiuli D, Calia A, Sileo M, Aiello MA (2015) Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone. Ultrasonics 60:33–40

    Article  Google Scholar 

  • Winkler EM (1973) Stone: properties, durability in man’s environment. Springer-Verlag, Berlin, 313

  • Yavuz AB, Kaputoglu SA, Colak M, Tanyu BF (2017) Durability assessments of rare green andesites widely used as building stones in Buca (Izmir), Turkey. Environmental earth sciences 76 (5), Art no 211, 1–15

  • Yesilnacar MI, Cetin H (2005) Site selection for hazardous wastes: a case study from the GAP area, Turkey. Eng Geol 81(4):371–388

    Article  Google Scholar 

  • Yilmaz IO, Cook TD, Hosgor I, Wagreich M, Rebman K, Murray AM (2018) The upper Coniacian to upper Santonian drowned Arabian carbonate platform, the Mardin-Mazidag area, SE Turkey: Sedimentological, stratigraphic, and ichthyofaunal records. Cretac Res 84:153–167

    Article  Google Scholar 

  • Zezza U (1990) Physical– mechanical properties of quarry and building stones. In: Veniale, F., Zezza, U. (Eds.), Analytical Methodologies of Damage Stones, Pavia. 1–20

  • Zhang S, Dong X, Zhang H, Deng M (2014) Research on deterioration mechanism of concrete materials in an actual structure. Adv Mater Sci Eng 2014/ID 306459, 1–6

  • Zoghlami K, Martin-Martin JD, Gomez-Gras D, Navarro A, Parcerisa D, Rosell JR (2017) The building stone of the Roman city of Dougga (Tunisia): provenance, petrophysical characterisation and durability. Compt Rendus Geosci 349(8):402–411

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Istanbul Technical University Civil Engineering Department for the laboratories. The authors would also like to thank the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celal Agan.

Additional information

Responsible Editor: Zeynal Abiddin Erguler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agan, C., Cicek, F. Some rock mass, chemical, physical, thermal, and mechanical properties of Mardin limestone, Turkey. Arab J Geosci 13, 188 (2020). https://doi.org/10.1007/s12517-020-5146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-5146-x

Keywords

Navigation