Skip to main content

Advertisement

Log in

Bioaccumulation of heavy metals in an aquatic insect (Baetis pavidus; Baetidae; Ephemeroptera) in the El Harrach Wadi (Algeria)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Baetis pavidus is considered the larva of aquatic insects belonging to the order Ephemeroptera. These ephemeral larvae measure 1 cm on average, and adults have a very short imaginal life. These ephemerals are a widely used biomonitoring tool; they are good indicators of water quality. In this study, we investigated the spatial variability in the bioaccumulation of four metallic trace elements (Hg, Pb, Cu, and Zn) in Baetis pavidus as a function of environmental parameters in the El Harrach Wadi, which crosses Algiers, the capital of Algeria. The sampling was carried out monthly over 13 months, from May 2011 to May 2012; ten (10) stations were selected along the Wadi, distributed between altitudes of 11 and 220 m. A variance analysis (ANOVA I) was carried out to study the spatial variability in the bioaccumulation of the trace elements in Baetis pavidus to determine whether heavy metal levels were significantly different between study stations. Significant correlations were recorded between concentrations of heavy metals in the water and water physicochemical parameters. In this study, the bioaccumulation of Hg and Pb varied significantly from upstream to downstream, but there was no significant difference in the bioaccumulation of Cu and Zn. Redundancy analysis (RDA) showed that the bioaccumulation of copper, zinc, and lead depended on the temperature of the water, calcium, and nitrates. The concentrations of mercury, lead, copper, and zinc accumulated in Baetis pavidus based on the environmental parameters, confirming strong contamination of the El Harrach Wadi water system by these four metallic trace elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Association Française de Normalisation (A.F.N.O.R) 1992 Qualité de l’eau. 861p

  • Beasley G, Kneale P (2002) Reviewing the impact of metals and PAHs on macroinvertebrates in urban water courses. Progr Phys Geogr 26:236–270. https://doi.org/10.1191/0309133302pp334ra

    Article  Google Scholar 

  • Bebba N, El Alami M, Arigue SF, Arab A (2015) Etude mésologique et biotypologique du peuplement des éphéméroptères de l’oued Abdi (Algérie) .J. Mater. Environ. Sci 6 (4) : 1164–1177

  • Belfiore C (1983) Guide pre il riconoscimente delle specieanimali delle arque interne Italiane (24) Effemerotteri (Ephemeroptera). Collana del progetto finalizzato, Promozione Della Qualità Dell’Ambiente AQ

  • Beltman DJ, Clements WH, Lipton J, Cacela D (1999) Benthic invertebrate metals exposure, accumulation and community-level effects downstream from a hardrock mine site. Environ Toxicol Chem 18:299–307. https://doi.org/10.1002/etc.5620180229

    Article  Google Scholar 

  • Cain DJ, Luoma SN, Carter JL (1992) Aquatic insects as bioindicators of trace-element contamination in cobble-bottom rivers and streams. Can J Fish Aquat Sci 49(10):2141–2154

    Article  Google Scholar 

  • Casas S (2005) Modélisation de la bioaccumulation de métaux traces (Hg, Cd, Pb, Cu et Zn) chez la moule, mytilus galloprovincialis, en milieu méditerranéen. Thèse de doctorat. Université du sud Toulon-Var : 314p

  • Clements WH (1994) Benthic invertebrate community responses to heavy metals in the Upper Arkansas River Basin; Colorado. J N Am Benthol Soc 13:30–44

    Article  Google Scholar 

  • Clements WH (1999) Metal tolerance and predator-prey interactions in benthic macroinvertebrate stream communities. Ecol Appl 9:1073–1084

    Google Scholar 

  • Clements WH, Cherry DS, Cairns JJ (1988) The impact of heavy metals on macroinvertebrate communities: a comparison of observational and experimental results. Can J Fish Aquat Sci 25:2017–2025

    Article  Google Scholar 

  • Clements WH, Carlisle DM, Lazorchak JM, Johnson PC (2000) Heavy metals structure benthic communities in Colorado Mountain streams. Ecol Appl 10:626–638. https://doi.org/10.2307/2641120

    Article  Google Scholar 

  • Clements WH, Cadmus P, Brinkman SF (2013) Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses. Environ Sci Technol 47(13):7506–7513. https://doi.org/10.1021/es401255h

    Article  Google Scholar 

  • Fialkowski W, Klonowska-Olejnika M, Brian D, Smith BD, Rainbowb PS (2003) Mayfly larvae (Baetis rhodani and B. vernus) as biomonitors of trace metal pollution in streams of a catchment draining a zinc and lead mining area of Upper Silesia, Poland. Environ Pollut 121:253–267. https://doi.org/10.1016/S0269-7491(02)00214-2

    Article  Google Scholar 

  • Freund JG, Petty JT (2007) Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined Appalachian watershed. Environ Manag 39:707–720. https://doi.org/10.1007/s00267-005-0116-3

    Article  Google Scholar 

  • Fullerton AH, Torgersen CE, Lawler JJ, Steel EA, Ebersole JL, Lee SY (2018) Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: effects of scale and climate change. Aquat Sci 80(3):1–15. https://doi.org/10.1007/s00027-017-0557-9

    Article  Google Scholar 

  • Gaikwad SS, Kamble NA (2014) Heavy metal pollution of Indian river and its biomagnifications in the molluscs. Oct Jour Env Res 2(1):67–76

    Google Scholar 

  • Girgin S, Kazancı N, Dügel M (2010) Relationship between aquatic insects and heavy metals in an urban stream using multivariate techniques. Int J Environ Sci Tech 7(4):653–664. https://doi.org/10.1007/BF03326175

    Article  Google Scholar 

  • Gray NF, Delaney E (2008) Comparison of benthic macroinvertebrate indices for the assessment of the impact of acid mine drainage on an Irish river below an abandoned Cu-S mine. Environ Pollut 155:31–40. https://doi.org/10.1016/j.envpol.2007.11.002

    Article  Google Scholar 

  • Hammarstrom JM, Seal RR, Meier AL, Kornfeld JM (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215(1–4):407–431. https://doi.org/10.1016/j.chemgeo.2004.06.053

    Article  Google Scholar 

  • Krishna AK, Mohan KR (2014) Risk assessment of heavy metals and their source distribution in waters of a contaminated industrial site. Environ Sci Pollut Res 21(5):3653–3669. https://doi.org/10.1007/s11356-013-2359-5

    Article  Google Scholar 

  • Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environmental Science & Technology 47(23):13385–13394. https://doi.org/10.1021/es403103t

    Article  Google Scholar 

  • Legendre P, Legendre LFJ (2012) Numerical ecology, 3rd edn. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Li J (2014) Risk assessment of heavy metals in surface sediments from the Yanghe River, China. Int J Environ Res Public Health 11:12441–12453

    Article  Google Scholar 

  • Lischer P (2001) Saupleing procédures to détermine the proposition of genetically modified organism in raw matériels. Milt Liebeusm. Hugg

  • M.A.T.E (Ministère de l’Aménagement de Territoire et de l’Environnement) 2005 Programme d’aménagement côtier. Zone côtière Algéroise. Activité : Protection des sites sensibles naturels marins du secteur Cap Djinet au mont Chenoua. Impact des activités anthropiques. Programme d’action Prioritaires. Centre des activités régionales. Alger. Algérie

  • Machado CS, Alvesa RIS, Fregonesia BM, Tonania KAA, Martinisb BS, Sierrac J, Nadalc M, Domingoc JL, Segura-Muñoza S (2016) Chemical contamination of water and sediments in the Pardo River, São Paulo, Brazil. Procedia Engineering 162:230–237. https://doi.org/10.1016/j.proeng.2016.11.046

    Article  Google Scholar 

  • Mantovi P, Bonazzi G (2004) Riduzione del tenore di rame e zinco nei mangimi. L’Informatore Agrario 4 (2004) 61–64

  • Mergler D, Anderson H, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36(1):3–11. https://doi.org/10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2

    Article  Google Scholar 

  • Namieśnik J, Rabajczyk A (2010) The speciation and physicochemical forms of metals in surface waters and sediments. Chem Spec Bioavailab 22(1):1–24. https://doi.org/10.3184/095422910X12632119406391

    Article  Google Scholar 

  • Neal C, Jarvie HP, Howarth SM, Whitehead PG, Williams RJ, Neal M, Harrow M, Wickham H (2000) The water quality of the River Kennet: initial observations on a lowland chalk stream impacted by sewage inputs and phosphorus remediation. The Science of the Total Environnement 251(252):477–495. https://doi.org/10.1016/S0048-9697(00)00400-9

    Article  Google Scholar 

  • Pallottini M, Goretti E, Gaino E, Selvaggi R, Cappelletti D, Céréghino R (2015) Invertebrate diversity in relation to chemical pollution in an Umbrian stream system (Italy). C R Biologies 338:511–520. https://doi.org/10.1016/j.crvi.2015.04.006

    Article  Google Scholar 

  • Pastorino P, Bertoli M, Squadrone S, Brizio P, Piazza G, Noser AGO, Oss Noser AG, Prearo M, Abete MC, Pizzul E (2019) Detection of trace elements in freshwater macrobenthic invertebrates of different functional feeding guilds: a case study in Northeast Italy. Ecohydrol Hydrobiol 19:428–440. https://doi.org/10.1016/j.ecohyd.2019.04.006

    Article  Google Scholar 

  • Pastorino P, Brizio P, Abete MC, Bertoli M, Noser AGO, Piazza G et al (2020) Macrobenthic invertebrates as tracers of rare earth elements in freshwater watercourses. Sci Total Environ 698:134282. https://doi.org/10.1016/j.scitotenv.2019.134282

    Article  Google Scholar 

  • Petrin Z, Laudon H, Malmqvist B (2007) Does freshwater macroinvertebrate diversity along a pH- gradient reflect adaptation to low pH? Freshw Biol 52:2172–2183. https://doi.org/10.1111/j.1365-2427.2007.01845.x

    Article  Google Scholar 

  • Poteat MD, Buchwalter DB (2013) Four reasons why traditional metal toxicity testing with aquatic insects is irrelevant. Environ Sci Technol 48:887–888. https://doi.org/10.1021/es405529n

    Article  Google Scholar 

  • Ramade F (2002) Dictionnaire encyclopédique de l’écologie et des sciences de l’environnement. 2ème Ed. DUNOD. Paris. 1075p

  • Rice KC, Jastram JD (2015) Rising air and stream-water temperatures in Chesapeake Bay region, USA. Clim Chang 128:127–138. https://doi.org/10.1007/s10584-014-1295-9

    Article  Google Scholar 

  • Rodier J, Legube B, Merlet N (2009) L’analyse de l’eau. Ed Dunod 78-1368

  • Sánchez-Marína P, Santos-Echeandía J, Nieto-Cid M, Álvarez-Salgado XA, Beiras R (2010) Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae. Aquat Toxicol 96(2):90–102. https://doi.org/10.1016/j.aquatox.2009.10.005

    Article  Google Scholar 

  • Schertzinger G, Ruchter N, Sures B (2018) Metal accumulation in sediments and amphipods downstream of combined sewer overflows. Sci Total Environ 616-617:1199–1207. https://doi.org/10.1016/j.scitotenv.2017.10.199

    Article  Google Scholar 

  • Senlin Z, Ognjen B, Dijana O, Marijana HN, Shiqiang W (2019) Long term variations of river temperature and the influence of air temperature and river discharge: case study of Kupa River watershed in Croatia. J Hydrol Hydromech 67(4):305–313. https://doi.org/10.2478/johh-2019-0019

    Article  Google Scholar 

  • Sigg L, Behra P, Stumm W (2000) Chimie des milieux aquatiques - Chimie des eaux naturelles et des interfaces dans l’environnement, Dunod, Paris, 567 p

  • Sola' C, Prat N (2006) Monitoring metal and metalloid bioaccumulation in Hydropsyche (Trichoptera Hydropsychidae) to evaluate metal pollution in a mining river. Whole body versus tissue content. Sci Total Environ 359:221–231. https://doi.org/10.1016/j.scitotenv.2005.04.007

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters. 3rd Edition, John Wiley & Sons, Inc., New York

  • Suhaila AH, Siti Hamidah I, Nur Aida H (2017) Distribution patterns of Baetis (Ephemeroptera: Baetidae) as tolerant taxa in freshwater biological monitoring. Malays appl biol 46(3):151–160

    Google Scholar 

  • TEAM RDEVELOPMENTCORE (2018) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Town R, Filella M (2000) A comprehensive systematic compilation of complexation parameters reported for trace metals in natural waters. Aquat Sci 62(3):252–295. https://doi.org/10.1007/PL00001335

    Article  Google Scholar 

  • USEPA (1995) Stay of federal water quality Criteria for metals; water quality standards; establishment of numeric criteria for priority toxic pollutants; states’ compliance revision of Metals criteria; final rules. Federal Register, 60 (86), 22228–22237, US Environmental Protection Agency, Washington,D.C.

  • Van Damme P, Hamel C, Ayala A, Bervoets L (2008) Macroinvertebrate community response to acid mine drainage in rivers of the high Andes (Bolivia). Environ Pollut 156:1061–1068. https://doi.org/10.1016/j.envpol.2008.04.018

    Article  Google Scholar 

  • Wan Mohd Hafezul WAG, Che Salmah MR, Suhaila AH, Salman AAS, Abu Hassan A, Ahmad Najmi NH (2016) Variation in environmental conditions influences diversity and abundance of Ephemeroptera in forest streams of northern peninsular Malaysia. Trop Ecol 57(3):489–501

    Google Scholar 

  • Ward JV (1992) Aquatic insect ecology: I. Biology and Habitat. Wiley and Sons. New York

  • Withers PJA, Neal C, Jarvie HP, Doody DG (2014) Agriculture and eutrophication: where do we go from here? J. Sustainability 6:5853–5875. https://doi.org/10.3390/su6095853

    Article  Google Scholar 

  • Wright DA, Welbourn P (2002) Environmental toxicology. Cambridge University Press. England

  • Xie W, Chen K, Zhu X, Nie X, Zhen G, Pan D, Wang S (2010) Evaluation on heavy metal contents in water and fishes collected from the waterway in the Pearl River Delta, South China. J Agro- Environ Sci 29:1917–1923

    Google Scholar 

  • Yoshida M, Moali M, Hoas O, Lakhdari M, Nechaoui L, Guerrida D, Chatal A, Oussalem S, Makour F, Khelifi F, Laleg A (2005) Environmental pollution in Oued El Harrach area, Alger. A preliminary report on mercury and heavy metals contaminations. Compte rendu du séminaire sur la pollution et la protection de l’environnement en Algérie

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djaouida Bouchelouche.

Additional information

Responsible Editor: Haroun Chenchouni

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchelouche, D., Arab, A. Bioaccumulation of heavy metals in an aquatic insect (Baetis pavidus; Baetidae; Ephemeroptera) in the El Harrach Wadi (Algeria). Arab J Geosci 13, 672 (2020). https://doi.org/10.1007/s12517-020-05582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05582-6

Keywords

Navigation