Skip to main content
Log in

Use of natural Stipa tenacissima fibers for the removal of H2S in an alkaline aqueous medium

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The current research aims to use plants as substituent of chemical additives in the elimination of pollutants, therefore making polluting industries environmentally friendly. In the present work, the potential use of Stipa tenacissima (cultivated in the dry region of North Africa) in the removal of H2S in aqueous solution was investigated. The obtained experimental results showed successful elimination of H2S through reaction with Stipa tenacissima fibers in an alkaline aqueous medium. The effect of Stipa tenacissimas mass, temperature ranging 20–60 °C, and aeration on sulfide removal efficiency was examined. The study clearly revealed that the aeration processes enhanced the removal reaction, and the increase in temperature gave a better removal rate with an optimal mass ratio of Stipa tenacissima of 0.1 g to eliminate 0.2 mg H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad AL, Sunarti AR, Lee KT, Fernando WJN (2010) CO2 removal using membrane gas absorption. Int. J. Greenhouse Gas Control 4:495–498

    Article  Google Scholar 

  • Belmabkhout Y, De Weireld G, Sayari A (2009) Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir 25:13275–13278

    Article  Google Scholar 

  • Cetin M (2016a) A change in the amount of CO2 at the Center of the Examination Halls: case study of Turkey. Studies on Ethno-Medicine 10(2):146–155

    Article  Google Scholar 

  • Cetin M, Sevik H, Saat A (2017) Indoor air quality: the samples of Safranbolu Bulak Mencilis cave. Fresenius Environ Bull 26(10):5965–5970

    Google Scholar 

  • Cetin M, Sevik H, Yigit N (2018a) Climate type-related changes in the leaf micromorphological characters of certain landscape plants. Environ Monit Assess 190:404

    Article  Google Scholar 

  • Cetin M, Sevik H (2016a) Change of air quality in Kastamonu city in terms of particulate matter and CO2 amount. Oxid Commun 39(4-II):3394–3401

    Google Scholar 

  • Cetin M, Sevik H (2016b) Measuring the impact of selected plants on indoor CO2 concentrations. Pol J Environ Stud 25(3):973–979

    Article  Google Scholar 

  • Cetin, M., 2013. Chapter 27: Landscape engineering, protecting soil, and runoff storm water, InTech-Open Science-Open Minds, Online July 1st, 2013. Book: Advances in landscape architecture-environmental sciences, ISBN 978–953–51-1167-2, pp. 697–722.

  • Cetin, M., 2015. Chapter 55: Using recycling materials for sustainable landscape planning, environment and ecology at the beginning of 21st century, ST. Kliment Ohridski University Press, Sofia, 821 p. ISBN:978–954-07-3999-1, pp. 783–788.

  • Cetin M, Zeren I, Sevik H, Cakir C, Akpinar H (2018b) A study on the determination of the natural park’s sustainable tourism potential. Environ Monit Assess 190(3):167

    Article  Google Scholar 

  • Cetin M, Adiguzel F, Kaya O, Sahap A (2018c) Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environ Dev Sustain 20(1):361–375

    Article  Google Scholar 

  • Cetin M (2016b) Determination of bioclimatic comfort areas in landscape planning: a case study of Cide Coastline. Turkish Journal of Agriculture-Food Science and Technology 4(9):800–804

    Article  Google Scholar 

  • Chang HM, Chung MJ, Park SB (2009) Cryogenic heat-exchanger design for freeze-out removal of carbon dioxide from landfill gas. J Therm Sci Technol 4:362–371

    Article  Google Scholar 

  • Chung YC, HO KL, Tseng CP (2007) Two-stage biofilter for effective NH3 removal from waste gases containing high concentrations of H2S. J Air Waste Manage Assoc 57:337–347

    Article  Google Scholar 

  • David R., Published Date: 19th November 2012. Sulfidic sediments and sedimentary rocks, 65, 1st Edition.

  • Dennis JS, Scott SA (2010) In situ gasification of a lignite coal and CO2 separation using chemical looping with a Cu-based oxygen carrier. Fuel l89:1623–1640

    Article  Google Scholar 

  • Díaz I, Ramos I, Fdz-Polanco M (2015) Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters. Bioresour Technol 192:280–286

    Article  Google Scholar 

  • Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD (2008) Advances in CO2 capture technology – the U. S. Department of Energy’s carbon sequestration program. Int. J. Greenhouse Gas Control 2:9–20

    Article  Google Scholar 

  • Gabriel D, Cox HHJ, Deshusses MA (2004) Conversion of full-scale wet scrubbers to biotrickling filters for H2S control at publicly owned treatment works. J Environ Eng ASCE 130(10):1110–1117

    Article  Google Scholar 

  • Holtzapple M. T., 2003. Encyclopedia of food sciences and nutrition, 2nd Edition, pp. 3535–3542.

  • Kravkaz Kuscu IS, Cetin M, Yigit N, Savaci G, Sevik H (2018) Relationship between enzyme activity (urease-catalase) and nutrient element in soil use. Pol J Environ Stud 5(27):2107–2112. https://doi.org/10.15244/pjoes/78475

    Article  Google Scholar 

  • Kim WG, Kang HU, Jung KM, Kim SH (2008) Synthesis of silica nanofluid and application to CO2 absorption. Sep Sci Technol 43:3036–3055

    Article  Google Scholar 

  • Liyuan D, May-Britt H (2014) Carbon nanotube reinforced PVAm/PVA blend FSC nanocomposite membrane for CO2/CH4 separation. Int J Greenhouse Gas Control 26:127–134

    Article  Google Scholar 

  • Mechi L, Ben AM (2015) Absorption of CO2 in aqueous solution with Stipa tenacissima fibers. Int J Greenhouse Gas Control 37:243–248

    Article  Google Scholar 

  • Mehtap O, Gozde S, Mehmet FF (2015) Use of zeolites for the removal of H2S: a mini-review 2. Fuel Process Technol 139:49–60

    Article  Google Scholar 

  • Natalia V, Blinova D, Svec F (2012) Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane. J Membr Sci 423–424:514–521

    Google Scholar 

  • Nielsen AH, Vollertsen J, Hvitved-Jacobsen T (2004) Chemical sulfide oxidation of wastewater--effects of pH and temperature. Water Sci Technol 50(4):185–192

    Article  Google Scholar 

  • Olumide WA, Doan PM, Nathalie L, Ange N, Yaqian Z (2017) Laboratory-scale investigation of the removal of hydrogen sulfide from biogas and air using industrial waste-based sorbents. J Environ Chem Eng 5(2):1809–1820

    Article  Google Scholar 

  • Peiffer S, Gade W (2007) Reactivity of ferric oxides toward H2S at low pH. Environ Sci Technol 41(9):3159–3164

    Article  Google Scholar 

  • Sevik H., Ahmaida E. A., Cetin M., 2017. Chapter 31: Change of the air quality in the urban open and green spaces: Kastamonu sample. Ecology, planning and design. Eds: Irina Koleva, Ulku Duman Yuksel, Lahcen Benaabidate, St. Kliment Ohridski University Press, ISBN: 978–954–07-4270-0, pp. 409–422.

  • Turkyilmaz A, Sevik H, Cetin M (2018a) The use of perennial needles as biomonitors for recently accumulated heavy metals. Landsc Ecol Eng 14(1):115–120

    Article  Google Scholar 

  • Turkyilmaz A, Sevik H, Cetin M, Ahmaida Saleh EA (2018b) Changes in heavy metal accumulation depending on traffic density in some landscape plants. Pol J Environ Stud 27(5):2277–2284. https://doi.org/10.15244/pjoes/78620,pp.2277-2284.

    Article  Google Scholar 

  • Yanming Z, Krishna RP (2013) Gas-phase ozone oxidation of hydrogen sulfide for odor treatment in water reclamation plants. Ozone: science. Engineering 35:390–398

    Google Scholar 

  • Zhang JZ, Millero FJ (1994) Investigation of metal sulfide complexes in sea water using cathodic stripping square wave voltammetry. Anal Chim Acta 284:497–504

    Article  Google Scholar 

  • Zhang ZJ, Zhang W, Chen X, Xia QB, Li Z (2010) Adsorption of CO2 on zeolite 13X and activated carbon with higher surface area. Sep Sci Technol 45:710–719

    Article  Google Scholar 

  • Zhang J, TONG Z (2006) H2S removal with cupric chloride for producing sulfur. Chinese. J Chem Eng 14(6):810–813

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lassaad Mechi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azaza, H., Mechi, L., Ben Amor, M. et al. Use of natural Stipa tenacissima fibers for the removal of H2S in an alkaline aqueous medium. Arab J Geosci 11, 803 (2018). https://doi.org/10.1007/s12517-018-4154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-4154-6

Keywords

Navigation