Skip to main content
Log in

The Laal-Kan fluorite deposit, Zanjan Province, NW Iran: constraints on REE geochemistry and fluid inclusions

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Laal-Kan fluorite deposit (west of Zanjan city, NW Iran) mainly occurred as some open-space filling and vein/veinlet in the schist of the Paleozoic age. Mineralogically, calcite, fluorite types (white, smoky, and violet), and quartz are the principal constituents accompanied by a number of minor accessory minerals such as hemimorphite, hematite, barite, and clays. Based on chemical analyses, fluorites of various colors were found to have low rare earth element (REE) concentrations (4.16–25.67 ppm). The chondrite-normalized REE patterns indicated that early fluorites were enriched in LREE, relative to HREE, whereas late fluorites were enriched in HREE relative to LREE. This study, therefore, indicated that fugacity of oxygen likely played a significant role in the occurrence of positive Ce and negative anomaly in the late fluorite. Furthermore, the Gd behavior of the fluorite samples could be attributed to the Gd-F complex in ore-forming fluids. On the other hand, low pH hydrothermal fluids under alkaline conditions were probably the main mechanism responsible for the deposition of the early fluorites in this district. Fluorite-hosted fluid inclusion analyses also indicated that fluorite-forming fluids consisted of NaCl, MgCl2, CaCl2, and LiCl with a narrow TH (118–151 °C) and high salinities (18.96–23.47 wt.% NaCl equiv.). Further, the diagram of Tb/La-Tb/Ca ratios revealed that fluorites were predominantly deposited in the hydrothermal environment and the late stage fluorites could be considered as the product of the secondary mineralization of the early fluorites due to the interaction of the fluid with the early fluorites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abedini A, Rezaei Azizi M, Calagari AA, Cheshmehsari M (2017) Rare earth element geochemistry and tetrad effects of the Dalir phosphatic shales, northern Iran. N Jb Geol Paläont Abh 286:169–188

    Article  Google Scholar 

  • Abedini A, Calagari AA, Rezaei Azizi M (2018) The tetrad-effect in rare earth elements distribution patterns of titanium-rich bauxites: evidence from the Kanigorgeh deposit, NW Iran. J Geochem Explor 186:129–142

    Article  Google Scholar 

  • Ackerman L (2005) Magmatic vs. hydrothermal origin of fluorites from Vlastejovice bohemian massif. J Czech Geol Soc 50:35–41

    Google Scholar 

  • Aghanabati A (1998) Major sedimentary and structural units of Iran (map). J Geosci 7:29–30

    Google Scholar 

  • Aghanabati A (2005) Geology of Iran. Geological survey of Iran (Persian book), Tehran, Iran

  • Akgul B (2015) Geochemical associations between fluorite mineralization and A-type shoshonitic magmatism in the KebaneElazig area, East Anatolia, Turkey. J Afr Earth Sci 111:222–230

    Article  Google Scholar 

  • Alavi M (1991) Sedimentary and structural characteristics of the paleo-Tethys remnants in northeastern Iran. Geol Soc Am Bull 103:983–992

    Article  Google Scholar 

  • Alavi M (1994) Tectonic of the Zagros orogenic belt of Iran; new data and interpretations. Tectonophysics 229:211–238

    Article  Google Scholar 

  • Alipour S, Abedini A, Talaei B (2014) Geochemical characteristics of the Qahr-Abad fluorite deposit, southeast of Saqqez, western Iran. Arab J Geosci 8(9):7309–7320

    Article  Google Scholar 

  • Alvin MP, Dunphy JM, Groves DI (2004) Nature and genesis of a carbonatite-associated fluorite deposit at Speewah, East Kimberley region, Western Australia. Mineral Petrol 80:127–153

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:187–214

    Article  Google Scholar 

  • Babakhani AR, Ghalamghash J (1990) Geological map of Iran, 1:100,000 series sheet Takht-e-Soleiman. Geological Survey of Iran, Tehran

    Google Scholar 

  • Badanina EV, Syritso LF, Volkova EV, Thomas R, Trumbull RB (2010) Composition of li-F granite melt and its evolution during the formation of the ore-bearing Orlovka massif in eastern Transbaikalia. Petrology 18:131–157

    Article  Google Scholar 

  • Bakker RJ, Doppler G (2016) Salinity and density modifications of synthetic H2O and H2O-NaCl fluid inclusions in re-equilibration experiments at constant temperature and confining pressure. Chem Geol 424:73–85

    Article  Google Scholar 

  • Bau M, Koschinsky A (2009) Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochem J 43:37–47

    Article  Google Scholar 

  • Bau M, Möller P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineral Petrol 45:231–246

    Article  Google Scholar 

  • Bau M, Romer RL, Lüders V, Dulski P (2003) Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England. Mineral Deposita 38:992–1008

    Article  Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57:683–684

    Article  Google Scholar 

  • Bosze S, Rakovan J (2002) Surface-structure-controlled sectoral zoning of the rare earth elements in fluorite from long Lake, New York, and Bingham, New Mexico, USA. Geochim Cosmochim Acta 66(6):997–1009

    Article  Google Scholar 

  • Burnham AD, Berry AJ (2014) The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts. Chem Geol 366:52–60

    Article  Google Scholar 

  • Castorina F, Masi U, Padalino G, Palomba M (2008) Trace-element and Sr-Nd isotopic evidence for the origin of the Sardinian fluorite mineralization (Italy). Appl Geochem 23:2906–2921

    Article  Google Scholar 

  • Censi P, Sortino F, Zuddas P, Saiano F, Brusca L, Chiavetta S, Falcone EE (2016) Rare earths behaviour during the deposition of volcanic sublimates. J Volcanol Geotherm Res 33:53–63

    Google Scholar 

  • Constantopoulos J (1988) Fluid inclusions and rare earth element geochemistry of fluorite from south Central Idaho. Econ Geol 83:626–636

    Article  Google Scholar 

  • Coşanay P, Kırat E, Çevik N, Kızılkanat C, Mutlu H, Koç S (2017) Geochemical, microthermometric, and isotopic constraints on the origin of fluorite deposits in Central Anatolia, Turkey. Turkish J Earth Sci 26:206–226

    Article  Google Scholar 

  • Daliran F, Borg G, Armstrong R, Vennemann T, Walther J, Woodhead JD (2009) Nonsulphide zinc deposits, Iran. The Hypogene emplacement and supergene modification history of the Angouran zinc deposit, NW-Iran: Berichte zur Lagerstätten- und Rohstoffforschung, vol 57. BGR, Hannover 75 pp

    Google Scholar 

  • Daliran F, Pride K, Walther J, Berner ZA, Bakker RJ (2013) The Angouran Zn (Pb) deposit, NW Iran: evidence for a two stage, hypogene zinc sulfide-zinc carbonate mineralization. Ore Geol Rev 53:373–402

    Article  Google Scholar 

  • Deng XH, Chen YJ, Yao JM, Bagas L, Tang HS (2014) Fluorite REE-Y (REY) geochemistry of the ca. 850 ma Tumen molybdenite-fluorite deposit, eastern Qinling, China: constraints on ore genesis. Ore Geol Rev 63:532–543

    Article  Google Scholar 

  • Dill HG, Nolte N, Hansen BT (2014) Lithology, mineralogy and geochemical characterizations of sediment-hosted Sr-F deposits in the eastern neo-Tethyan region-with special reference to evaporation and halokinesis in Tunisia. J Afr Earth Sci 92:76–96

    Article  Google Scholar 

  • Dill HG, Luna LI, Nolte N, Hansen BT (2016) Chemical, isotopic and mineralogical characteristics of volcanogenic epithermal fluorite deposits on the Permo-Mesozoic foreland of the Andean volcanic arc in Patagonia (Argentina). Chem Erde 76(2):275–297

    Article  Google Scholar 

  • Ehya F (2012) Variation of mineralizing fluids and fractionation of REE during the emplacement of the vein-type fluorite deposit at Bozijan, Markazi province, Iran. J Geochem Explor 112:93–106

    Article  Google Scholar 

  • Ekambaram V, Brookins DG, Rosenburg PE, Emanuel KM (1986) REE geochemistry of fluorite-carbonate deposits in Western Montana. USA Chem Geol 54:319–331

    Article  Google Scholar 

  • El Hadek HH, Mohamed MAM, Bishara WW, El Habaak GH, Ali KA (2016) Evolution of mineralizing fluids of greisen and fluorite veins, evidence from fluid inclusions. International Journal of Geophysics and Geochemistry 3(5):49–56

    Google Scholar 

  • Elmi Assadzadeh G, Samson IM, Gagnon JE (2017) The trace element chemistry and cathodoluminescence characteristics of fluorite in the Mount Pleasant Sn-W-Mo deposits: insights into fluid character and implications for exploration. J Geochem Explor 172:1–19

    Article  Google Scholar 

  • Fawzy KM (2017) The genesis of fluorite veins in Gabal El Atawi granite, central Eastern Desert, Egypt. J Afr Earth Sci:1–8

  • Feng JL, Zhao ZH, Chen F, Hu HP (2014) Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan plateau, China. J Volcanol Geotherm Res 287:1–11

    Article  Google Scholar 

  • Gagnon JE, Samson IM, Fryer BJ, Williams-Jones AE (2003) Compositional heterogeneity in fluorite and the genesis of fluorite deposits: insights from LA-ICP-MS analysis. Can Mineral 41:365–382

    Article  Google Scholar 

  • Gazanfari F (1991) Metamorphic and igneous petrogenesis in NW of Takab with special regard to zinc mineralization in Angouran mine. MSc Thesis, Tehran University, 530 p. (In Persian)

  • U.S. Geological Survey (2016) Mineral commodity summaries 2016. U.S. Geological Survey

    Google Scholar 

  • Gilg HA, Boni M, Balassone G (2006) Marble-hosted sulfide ores in the Angouran Zn-(Pb-ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex. Miner Depos 41:1–16

    Article  Google Scholar 

  • GSI-Geological Survey of Iran (2000) Geological Map of Takht-e-Soleyman, 1:100.000 Series, Sheet 5463

  • Hamdi B (1995) Precambrian-Cambrian deposits in Iran. In: Hushmandzadeh A (ed) Treatise of the geology of Iran, vol 20. Geological Survey of Iran, Tehran, pp 1–535

    Google Scholar 

  • Hannigan R, Dorval E, Jones C (2010) The rare earth element chemistry of estuarine surface sediments in the Chesapeake Bay. Chem Geol 272:20–30

    Article  Google Scholar 

  • Ismail I, Baioumy H, Ouyang H, Mossa H, Fouad Aly H (2015) Origin of fluorite mineralizations in the Nuba Mountains, Sudan and their rare earth element geochemistry. J Afr Earth Sci 112:276–286

    Article  Google Scholar 

  • Khorshidi E, Etemadi Abdol Abadi B (2016) REE and stable isotope (C, O, S) geochemistry of fluorite from the Kamar-Mehdi deposit, southwest of Tabas, Iran. Arab J Geosci 9:123

    Article  Google Scholar 

  • Kraemer D, Tepe N, Pourret O, Bau M (2016) Negative cerium anomalies in manganese (hydr)oxide precipitates due to cerium oxidation in the presence of dissolved siderophores. Geochim Cosmochim Acta 196:197–208

    Article  Google Scholar 

  • Levresse G, Tritlla J, Solorio-Munguía JG, Valencia V, Pinto Linares PJ (2011) Fluid inclusions and U/Pb dating of the El Pilote fluorite skarn occurrence: Metallogenic implications. Compt Rendus Geosci 34:342–350

    Article  Google Scholar 

  • Li X, Wang G, Mao W, Wang C, Xiao R, Wang M (2014) Fluid inclusions, muscovite Ar-Ar age, and fluorite trace elements at the Baiyanghe volcanic be-U-Mo deposit, Xinjiang, Northwest China: implication for its genesis. Ore Geol Rev 64:387–399

    Article  Google Scholar 

  • Lottermoser BG (1992) Rare earth elements and hydrothermal ore formation processes. Ore Geol Rev 7:25–41

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2007) An experimental study of the solubility and speciation of neodymium (III) fluoride in F-bearing aqueous solutions. Geochim Cosmochim Acta 71:3056–3069

    Article  Google Scholar 

  • Migdisov A, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42

    Article  Google Scholar 

  • Möller P, Parekh P, Schneider HJ (1976) The application of Tb/ca-Tb/La abundance ratios to problems of fluorspar genesis. Mineral Deposita 11:111–116

    Article  Google Scholar 

  • Möller P, Bau M, Dulski P, Lüders V (1998) REE and Y fractionation in fluorite and their bearing on fluorite formation. In: Proceedings of the ninth quadrennial IAGOD symposium. Schweizerbart, Stuttgart, pp 575–592

    Google Scholar 

  • Möller P, Rosenthal E, Geyer S, Guttman J, Dulski P, Rybakov M, Zilberbrand M, Jahnke C, Flexer A (2007) Hydrochemical processes in the lower Jordan valley and in the Dead Sea area. Chem Geol 239:27–49

    Article  Google Scholar 

  • Mondillo N, Boni M, Balassone G, Spoleto S, Stellato F, Marino A, Santoro L, Spratt J (2015) Rare earth elements (REE)-minerals in the Silius fluorite vein system (Sardinia, Italy). Ore Geol Rev 74:211–224

    Article  Google Scholar 

  • Moore F, Sadeghi M, Jami M (1998) Physicochemical characteristics of mineralizing fluids at the Kamar-Mehdi mine, Tabas region. Iran J Sci Tech 9:245–253

    Google Scholar 

  • Pei Q, Zhang S, Santosh M, Cao H, Zhang W, Hu X, Wang L (2016) Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, China. Ore Geol Rev 83:174–190

    Article  Google Scholar 

  • Pride K, Salehi H (2003) Angouran zinc deposit, Iran. Prospectors and Developers Association of Canadas, Abstracts, 24

  • Qishlaqi A, Moore F (2006) Recognition of Pinavand fluorite mines occurrence based on geochemistry and REE data. Iran J Crystal Mineral 2:325–338

    Google Scholar 

  • Rajabi A, Rastad E, Canet C (2012) Metallogeny of cretaceous carbonate-hosted Zn-Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. Int Geol Rev 54:1649–1672

    Article  Google Scholar 

  • Rajabzadeh MA (2007) A fluid inclusion study of a large MVT barite-fluorite deposit: komshecheh, Central Iran. Iran J Sci Tech 31:73–87

    Google Scholar 

  • Rddad L, Bouhlel S (2016) The Bou Dahar Jurassic carbonate-hosted Pb-Zn-Ba deposits (oriental high atlas, Morocco): fluid-inclusion and C-O-S-Pb isotope studies. Ore Geol Rev 72:1072–1087

    Article  Google Scholar 

  • Rezaei Azizi M, Abedini A, Alipour S, Niroomand S, Sasmaz A, Talaei B (2017) Rare earth element geochemistry and tetrad effects in fluorites: a case study from the Qahr-Abad deposit, Iran. N Jb Geol Paläont Abh 383:255–273

    Article  Google Scholar 

  • Richards JP, Wilkinson D, Ullrich TH (2006) Geology of the sari Gunay epithermal gold deposit, northwest Iran. Econ Geol 101:1455–1496

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions: mineralogical Society of America. Rev Mineral Geochem

  • Sadeghi M (2003) Mineralogy, geochemistry and fluid inclusion study of Anguran deposit, NW Iran. Abstracts of the 13th V.M. Goldschmidt Conference, Kurashiki, 7-12 September 2003, A406

  • Salem LA, Abdel-Moneum AA, Shazly AG, El-Shibiny NH (2001) Mineralogy and geochemistry of Gabal El-lneigi granite and associated fluorite veins, central Eastern Desert, Egypt: application of fluid inclusions to fluorite genesis. J Afr Earth Sci 32(1):29–45

    Article  Google Scholar 

  • Sasmaz A, Yavuz F (2007) REE geochemistry and fluid-inclusion studies of fluorite deposits from the Yaylagözü area (Yıldızeli-Sivas) in Central Turkey. N J Mineral Abh 183(2):215–226

    Google Scholar 

  • Sasmaz A, Önal A, Sagiroglu A, Önal M, Akgul B (2005) Origin and nature of the mineralizing fluids of thrust zone fluorites in Celikhan (Adiyaman, eastern Turkey): a geochemical approach. Geochem J 39:131–139

    Article  Google Scholar 

  • Schwinn G, Markl G (2005) REE systematics in hydrothermal fluorite. Chem Geol 216:235–248

    Article  Google Scholar 

  • Tang HS, Chen YJ, Santosh M, Zhong H, Yange T (2013) REE geochemistry of carbonates from the Guanmenshan formation, Liaohe group, NE Sino-Korean craton: implications for seawater compositional change during the great oxidation event. Precambrian Res 227:316–336

    Article  Google Scholar 

  • Trinkler M, Monecke T, Thomas R (2005) Constraints on the genesis of yellow fluorite in hydrothermal barite–fluorite veins of the Erzgebirge, eastern Germany: evidence from optical absorption spectroscopy, rare-earth-element data and fluid-inclusion investigations. Can Mineral 43:883–898

    Article  Google Scholar 

  • Vinokurov SF, Golubev VN, Krylova TL, Prokofev VY (2014) REE and fluid inclusions in zoned fluorites from eastern Transbaikalia: distribution and geochemical significance. Geochem Int 52(8):654–669

    Article  Google Scholar 

  • Williams MR, Holwell DA, Lilly RM, Case GND, McDonald I (2015) Mineralogical and fluid characteristics of the fluorite-rich Monakoff and E1 cu-au deposits, Cloncurry region, Queensland, Australia: implications for regional F-Ba-rich IOCG mineralization. Ore Geol Rev 64:103–127

    Article  Google Scholar 

  • Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium, 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of nature waters. Chem Geol 82:159–186

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express thanks and gratitude to the authorities of Research Bureau of Urmia University. Our gratitude is further expressed to Prof. Abdullah M. Al-Amri and Prof. Emanuela Schingaro for their advice, valuable suggestions, and editorial assistance, and also to Dr. Martina Zucchi, Dr. Maria Lacalamita, and an anonymous reviewer for reviewing and making critical comments on this manuscript.

Funding

This work was supported financially by the Research Bureau of Urmia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Rezaei Azizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, M.R., Abedini, A., Alipour, S. et al. The Laal-Kan fluorite deposit, Zanjan Province, NW Iran: constraints on REE geochemistry and fluid inclusions. Arab J Geosci 11, 719 (2018). https://doi.org/10.1007/s12517-018-4055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-4055-8

Keywords

Navigation