Skip to main content

Advertisement

Log in

Using robust staged R-mode factor analysis and logistic function to identify probable Cu-mineralization zones in Khusf 1:100,000 sheets, east of Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Factor analysis method is a multivariate analysis technique that is widely used for the interpretation of stream sediment geochemical data. The purpose of factor analysis is describing the changes in a set of multi-element geochemical data by reducing the dimension of the data and variables to a number of factors that can present the hidden association between elements. Differences in mobility, physical, and chemical properties of the elements and the nature of the factor analysis method in which the matrix of all data is used cause paragenes elements not to be found on the output of factor analysis. In this research, to improve the output of factor analysis for deriving the best reagent multi-element mineralization, robust staged factor analysis method was used according to the close nature of geochemical data in order to identify the Cu-mineralization potential in Khusf 1:100,000 sheets located at the east of Iran. The robust staged factor analysis enhances the recognition of anomalous geochemical signatures and increases geochemical anomaly intensity and the percentage of the total explained variability of data. As indicated by the results of the study, few anomalous zones have been found in the study area. The observation of chalcopyrite and malachite mineralization in andesite and dacite–andesite rocks in a region during the field study confirms the effectiveness of the robust SFA technique. Such studies can be used by mine engineers and geologists for designing an optimum grid exploration on the next exploration steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdolmaleki M, Mokhtari AR, Akbar S, Alipour-Asll M, Carranza EJM (2014) Catchment basin analysis of stream sediment geochemical data: incorporation of slope effect. J Geochem Explor 140:96–103

    Article  Google Scholar 

  • Aitchison J (1986) The statistical analysis of compositional data. Monographs on statistics and applied probability. Chapman and Hall, London, 416 p

    Book  Google Scholar 

  • Aitchison J, Barceló-Vidal C, Martín-Fernández J, Pawlowsky-Glahn V (2000) Logratio analysis and compositional distance. Math Geol 32(3):271–275

    Article  Google Scholar 

  • Bai J, Porwal A, Hart C, Ford A, Yu L (2010) Mapping geochemical singularity using multifractal analysis: application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. J Geochem Explor 104(1):1–11

    Article  Google Scholar 

  • Basilevsky A (1994) Statistical factor analysis and related methods. Theory and applications. Wiley, New York, 737 pp

    Google Scholar 

  • Berberian M (2000) The 1994 SefidaBeh earthquakes in Eastern Iran: blind thrusting-plane slip on A1 growing A1 antic line, & active tectonic s of the Sistan Suture Zone. Geophys J Int 142:283–299

    Article  Google Scholar 

  • Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late cretaceous and early miocene andeantype plutonic activity in northern Makran and Central Iran. J Geol Soc 139:605–614

    Article  Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning, (Vol. 1). Springer, New York

  • Bonham-carter GF, Goodfellow DJ (1986) Background corrections to stream geochemical data using digitized drainage and geological maps: application to Selwyn Basin, Yukon and Northwest Territories. J Geochem Explor 25:139–155

    Article  Google Scholar 

  • Bonham-carter GF, Rogers PJ, Ellwood DJ (1987) Catchment basin analysis applied to surficial geochemical data, Cobequid Highlands, Nova Scotia. J Geochem Explor 29:259–278

    Article  Google Scholar 

  • Borovec Z (1996) Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Sci Total Environ 177(1):237–250

    Article  Google Scholar 

  • Buccianti A, Pawlowsky-Glahn V (2005) New perspectives on water chemistry and compositional data analysis. Math Geol 37:703–727

    Article  Google Scholar 

  • Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V (eds) (2006) Compositional data analysis in the geosciences: from theory to practice. Geol Soc Lond

  • Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS, vol 11. Elsevier

  • Carranza EJM (2010) Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochem Explor Environ Anal 10:171–187

    Article  Google Scholar 

  • Carranza EJM (2011) Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. J Geochem Explor 110:167–185

    Article  Google Scholar 

  • Chen G, Cheng Q, Liu T, Yang Y (2013) Mapping local singularities using magnetic data to investigate the volcanic rocks of the Qikou depression, Dagang oilfield, eastern China. Nonlinear Process Geophys 20:501–511

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Bonham-Carter GF (1996) A spatial analysis method for geochemical anomaly separation. J Geochem Explor 56:183–195

    Article  Google Scholar 

  • Cheng Q, Xu Y, Grunsky E (2000) Integrated spatial and spectrum method for geochemical anomaly separation. Nat Resour Res 9:43–52

    Article  Google Scholar 

  • Daneshfar B, Desrochers A, Budkewitsch P (2006) Mineral-potential mapping for MVT deposits with limited datasets using Landsat data and geological evidence in the Borden Basin, Northern Baffin Island, Nunavut, Canada. Nat Resour Res 15:129–149

    Article  Google Scholar 

  • Darwish MAG, Poellmann H (2010) Geochemical exploration for gold in the Nile Valley block (A) area, Wadi Allaqi, South Egypt. Chem Erde 70:353–362

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300

    Article  Google Scholar 

  • Filzmoser P, Hron K (2008) Outlier detection for compositional data using robust methods. Math Geosci 40(3):233–248

    Article  Google Scholar 

  • Filzmoser P, Hron K (2009) Correlation analysis for compositional data. Math Geosci 41(8):905–919

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2009a) Principal component analysis for compositional data with outliers. Environmetrics 20(6):621–632

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2009b) Univariate statistical analysis of environmental (compositional) data: problems and possibilities. Sci Total Environ 407(23):6100–6108

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C, Garrett R (2009c) Robust factor analysis for compositional data. Comput Geosci 35(9):1854–1861

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2010) The bivariate statistical analysis of environmental (compositional) data. Sci Total Environ 408(19):4230–4238

    Article  Google Scholar 

  • Garrett RG (2013) The ‘rgr’ package for the R open source statistical computing and graphics environment-a tool to support geochemical data interpretation. Geochem Explor Environ Anal 13(4):355–378

    Article  Google Scholar 

  • Hassani Pak AA, Sharafodin M (2011) Exploration data analysis. ISBN 978-964-03-4459-0

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200

    Article  Google Scholar 

  • Karimpour M (2011) Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to quaternary igneous rocks in Lut Block, Eastern Iran. Geopersia 1(1):19–54

    Google Scholar 

  • Lapworth DJ, Knights KV, Key RM et al (2012) Geochemical mapping using stream sediments in west-central Nigeria: implications for environmental studies and mineral exploration in West Africa. Appl Geochem 27:1035–1052

    Article  Google Scholar 

  • Lepeltier C (1969) A simplified statistical treatment of geochemical data by graphical representation. Econ Geol 64:538–550

    Article  Google Scholar 

  • Liu Y, Cheng Q, Xia Q, Wang X (2014) Multivariate analysis of stream sediment data from Nanling metallogenic belt, South China. Geochem Explor Environ Anal 14(4):331–340

    Article  Google Scholar 

  • Martín-Fernández JA, Hron K, Templ M, Filzmoser P, Palarea-Albaladejo J (2012) Model-based replacement of rounded zeros in compositional data: classical and robust approaches. Comput Stat Data Anal 56(9):2688–2704

    Article  Google Scholar 

  • Mokhtari AR, Abdolmaleki M, Akbar S (2013) Geochemical stream sediment catchment basin modeling method. Iran J Min Eng (IRJME) 8(19):67–76

    Google Scholar 

  • Ohta A, Imai N, Terashima S, Tachibana Y (2005) Influence of surface geology and mineral deposits on the spatial distributions of elemental concentrations in the stream sediments of Hokkaido, Japan. J Geochem Explor 86(2):86–103

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue J (2006) Compositional data and their analysis: an introduction. Geol Soc Lond, Spec Publ 264(1):1–10

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015) Modelling and analysis of compositional data. Wiley, Chichester

    Book  Google Scholar 

  • Porwal A, Carranza EJM, Hale M (2003) Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Nat Resour Res 12:1–25

    Article  Google Scholar 

  • Reimann C (2005a) Geochemical mapping: technique or art? Geochem Explor Environ Anal 5:359–370

    Article  Google Scholar 

  • Reimann C (2005b) Sub-continental-scale geochemical mapping: sampling, quality control and data analysis issues. Geochem Explor Environ Anal 5:311–323

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2002) Factor analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 17(3):185–206

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346:1–16

    Article  Google Scholar 

  • Rietveld T, Van Hout R (1993) Statistical techniques for the study of language and language behaviour. Mouton de Gruyter, Berlin – New York

    Book  Google Scholar 

  • Rousseeuw PJ, Van Driessen KV (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3):212–223

    Article  Google Scholar 

  • Saager R, Esselaar PA (1969) Factor analysis of geochemical data from the Basal Reef, Orange Free State Goldfield, South Africa. Econ Geol 64:445–451

    Article  Google Scholar 

  • Saager R, Singlair AJ (1974) Factor analysis of stream sediment geochemical data from the Mount Nansen area, Yujon territory, Canada. Mineral Deposita 9:243–252

    Article  Google Scholar 

  • Shiva M (1998) Stream sediment geochemical exploration in the arid environment of East Iran. PhD thesis, the University of Natingham, UK

  • Spadoni M (2006) Geochemical mapping using a geomorphologic approach based on catchments. J Geochem Explor 90(3):183–196

    Article  Google Scholar 

  • Stocklin J, Nabavi MH (1973) Tectonic map of Iran. Geological Survey of Iran

  • Theodoridis S, Koutroumbas K (2006) Pattern recognition, 2nd edn. Academic Press, Elsevier, USA

  • Tirrul R, Bell IR, Griffis RJ, Camp VE (1983) The Sistan suture zone of eastern Iran. Geol Soc Am Bull 94:134–156. doi:10.1130/0016-7606(1983)94<134:TSSZOE>2.0.CO;2

    Article  Google Scholar 

  • Treiblmaier H, Filzmoser P (2010) Exploratory factor analysis revisited: how robust methods support the detection of hidden multivariate data structures in IS research. Inf Manag 47(4):197–207

    Article  Google Scholar 

  • Tripathi VS (1979) Factor analysis in geochemical exploration. J Geochem Explor 11(3):263–275

    Article  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading

    Google Scholar 

  • Vahdati F (1989) Geological map of Khosf (1:100,000). Geological Survey of Iran Publication

  • Van Helvoort P-J, Filzmoser P, van Gaans PF (2005) Sequential factor analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: an application to a bulk chemical characterization of fluvial deposits (Rhine–Meuse delta, The Netherlands). Appl Geochem 20(12):2233–2251

    Article  Google Scholar 

  • Wilde AR, Bierlein FP, Pawlitschek M (2004) Lithogeochemistry of orogenic gold deposits in Victoria, SE Australia: a preliminary assessment for undercover exploration. J Geochem Explor 84:35–50

    Article  Google Scholar 

  • Yousefi M, Kamkar-Rouhani A, Carranza EJM (2012) Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J Geochem Explor 115:24–35

    Article  Google Scholar 

  • Yousefi M, Kamkar-Rouhani A, Carranza EJM (2014) Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem Explor Environ Anal 14(1):45–58

    Article  Google Scholar 

  • Zuo R (2011) Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). J Geochem Explor 111:13–22

    Article  Google Scholar 

  • Zuo R, Xia Q, Wang H (2013) Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Appl Geochem 28:202–211

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their appreciations to the authorities of the South Khorasan Industry, Mine & Trade Organization who provided the facilities for doing this research. The financial support of the University of Birjand is gratefully thanked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Aryafar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keykha Hoseinpoor, M., Aryafar, A. Using robust staged R-mode factor analysis and logistic function to identify probable Cu-mineralization zones in Khusf 1:100,000 sheets, east of Iran. Arab J Geosci 9, 157 (2016). https://doi.org/10.1007/s12517-015-2266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-015-2266-9

Keywords

Navigation