Skip to main content
Log in

Mineralogy, fluid inclusion, and oxygen isotope constraints on the genesis of the Lalla Zahra W-(Cu) deposit, Alouana district, northeastern Morocco

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Lalla Zahra W-(Cu) prospect of northeastern Morocco is hosted in a Devonian volcaniclastic and metasedimentary sequence composed of graywacke, siltstone, pelite, and shale interlayered with minor tuff and mudstone. Intrusion of the 284 ± 7 Ma Alouana concentrically zoned, two micas, calc-alkaline, and post-collisional Alouana granitoid pluton has contact metamorphosed the host rocks, giving rise to a metamorphic assemblage of quartz, plagioclase, biotite, muscovite, chlorite, and alusite, and cordierite. The mineralization occurs in and along subvertical, 20 to 40 cm thick, and structurally controlled tensional veins composed of quartz accompanied by molybdenite, wolframite, scheelite, base metal sulphides, carbonates, barite, and fluorite. Three main stages of mineralization (I, II, and III), each characterized by a specific mineral assemblage and/or texture, are recognized. Quartz dominates in all the veins and commonly displays multiple stages of vein filling and brecciation, and a variety of textures. The early tungsten-bearing stage consists of quartz-1, tourmaline, muscovite, wolframite, scheelite, and molybdenite. With advancing paragenetic sequence, the mineralogy of the veins shifted from stage I tungsten-bearing mineralization through stage II, dominated by base metal sulphides, to stage III with late barren carbonates and barite ± fluorite mineral assemblages. Pervasive hydrothermal alteration affected, to varying degrees, the Alouana intrusion, resulting in microclinization, albitization, episyenitization, and greisenization of all the granitic units. Fluid inclusion data yield homogenization temperatures ranging from 124°C to 447°C for calculated salinity estimates in the range of 0.4 to ~60 wt% NaCl equiv. Similarly, the δ18O values for the three generations of quartz range from 11.7‰ to 13.9‰ V-SMOW. Calculated δ18O values of the parent fluid in the range between −3‰ and +9‰ V-SMOW are consistent either with a mixture of water of different origins, including magmatic water, or an origin from seawater or meteoric water that probably exchanged oxygen with rocks at elevated temperatures. The coexistence of CO2-rich and H2O-rich fluid inclusions reflect the presence of a boiling fluid associated with the deposition of the early tungsten-bearing stage mineralization at relatively high temperature. The general temperature and salinity decrease with advancing paragenetic sequence suggest that the early high temperature, magmatic, highly saline, and boiling fluid mixed with meteoric non-boiling fluid results in the precipitation of base metal sulphide and carbonate–barite stage mineral assemblages, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aissa M (1997) Etude des interactions fluides-minéraux des skarns à Sn, W, B d'El Hammam (Maroc Central). Facteurs physico-chimiques contrôlant le développement du stade stannifère. Unpub. Ph.D Thesis (Doct. Etat), University of Moulay Smail, Meknes, Morocco, 310 pp.

  • Beuchat S, Moritz R, Pettke T (2004) Fluid evolution in the W–Cu–Zn–Pb San Cristobal vein, Peru: fluid inclusion and stable isotope evidence. Chem Geol 210:201–224

    Article  Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim Cosmochim Acta 57:683–684

    Article  Google Scholar 

  • Bodnar RJ (1995) Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. Mineral Assoc Can Short Course 23:139–152

    Google Scholar 

  • Bodnar RJ, Sterner SM, Hall DL (1989) SALTY: a FORTRAN program to calculate compositions of fluid inclusions in the system NaCl–KCl–H2O. Comput Geosci 15:19–41

    Article  Google Scholar 

  • Boiron MC, Essarraj S, Sellier E, Cathelineau M, Lespinasse M, Poty B (1992) Identification of fluid inclusions in relation to their host microstructural domains in quartz by cathodoluminescence. Geochim Cosmochim Acta 56:175–185

    Article  Google Scholar 

  • Boushaba A (1996) Le massif granitique du Ment (Maroc Central Hercynien) dans son contexte tectono-magmatique régional, et les manifestations hydrothermales associées. Unpub. Ph.D Thesis (Doct. Etat), I.N.P.L. Nancy, France, 550 pp.

  • Boushaba A. (2008) Granitoïdes Hercyniens du Maroc Central: pétrologie et minéralisations associées. In: Bouabdellah, M., Boudchiche, L., (Eds.), Géologie du Maroc: où en sommes-nous un siècle après? 20ème Colloque des Bassins Sédimentaires Marocains: Oujda 21–23 mai 2008. pp. 171–172.

  • Boutaleb M (1988) Reconstitution de l'évolution tectono-métamorphique, magmatique et hydrothermale du district stanno-wolframifère de Oulmès (Maroc central). Implications métallogéniques. Unpub. Ph.D Thesis (Doct. Etat), University of Nancy, France, 400 pp.

  • Breiter K, Föster H-J, Seltmann R (1999) Variscan silicic magmatism and related tin–tungsten mineralization in the Erzgebirge-Slavkovskles metallogenic province. Miner Deposita 34:505–521

    Article  Google Scholar 

  • Burruss RC (1981) Analysis of phase equilibria in C–O–H–S fluid inclusions. Mineralogical Association of Canada Short Course Handbook 6:39–74

    Google Scholar 

  • Candela PA (1991) Physics of aqueous phase evolution in plutonic environments. Am Mineral 76:1081–1092

    Google Scholar 

  • Černý P, Blavin PL, Cuney M, London D (2005) Granite-related ore deposits. Economic Geology 100th Anniversary Volume, 337–370.

  • Cheilletz A (1984) Les minéralisations stratiformes à scheelite–biotite du Djebel Aouam (Maroc central). Exemple de skarn d'infiltration développé par remplacement des séries sédimentaires gréso-pélitiques. Bulletin de Minéralogie 108:367–376

    Google Scholar 

  • Cheilletz A, Giuliani G (1982) Rôle de la déformation dans la genèse des épisyénites feldspathiques des Massifs de Lovios (Galice) et des Zaer (Maroc central). Relations avec les minéralisations en tungstène-étain associées. Miner Deposita 17:387–400

    Article  Google Scholar 

  • Cuney M, Alexandrov P, Le Carlier C, Cheilletz A, Raimbault L, Ruffet G (2002) The Sn–W-rare metals mineral deposits of the Western Variscan chain in their orogenic setting: the case of the Limousin area (French Massif Central). Geol Soc Lond Spec Publ 206:213–228

    Article  Google Scholar 

  • Davis WJ, Williams-Jones AE (1985) A fluid inclusion study of the porphyry-greisen, tungsten–molybdenum deposit at Mount Pleasant, New Brunswick, Canada. Miner Deposita 20:94–101

    Article  Google Scholar 

  • Davis DW, Lowenstein TK, Spencer RJ (1990) Melting behaviour of fluid inclusions in laboratory grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O and NaCl–CaCl2–H2O. Geochim Cosmochim Acta 54:591–601

    Article  Google Scholar 

  • Desteucq C, Hoepffner C (1980) Déformations hercyniennes dans les boutonnières paléozoïques de Debdou et du Mekkam (Maroc Oriental). Mines, Géologie et Energie 48:93–99

    Google Scholar 

  • Dubois M, Marignac C (1997) The H2O–NaCl–MgCl2 ternary phase diagram with special application to fluid inclusion studies. Econ Geol 92:114–119

    Article  Google Scholar 

  • El Hadi H, Tahiri A, Reddad A (2003) Les granitoïdes hercyniens post-collisionnels du Maroc oriental: une province magmatique à shoshonitique. C.R. Géosciences 335:959–967

    Article  Google Scholar 

  • Feng C, Zeng Z, Zhang D, Qu W, Du A, Li D, She H (2011) SHRIMP zircon U–Pb and molybdenite Re–Os isotopic dating of the tungsten deposits in the Tianmenshan–Hongtaoling W–Sn orefield, southern Jiangxi Province, China, and geological implications. Ore Geol Rev 43:8–25

    Article  Google Scholar 

  • Fettouhi A, Qalbi A, Barodi EB (2002) L'étain, le molybdène et le tungstène au Maroc. In: Barodi, E.B., Watanabe, Y., Mouttaqi, A., Annich M., (eds.), Méhodes et techniques d'exploration minière et principaux gisements au Maroc. Projet JICA/BRPM, pp. 232–249.

  • Figuet C (1963) Etude géochimique et métallogénique du massif de Debdou (Maroc oriental). Rapport inédit, Serv. Régional de l'Energie et des Mines, Oujda (Maroc), pp. 430–432.

  • Giuliani G (1984) Les concentrations filoniennes à tungstène-étain du massif granitique des Zaer (Maroc central): minéralisations et phases associées. Miner Deposita 19:193–201

    Article  Google Scholar 

  • Giuliani G, Sonet J (1982) Contribution à l'étude géochronologique du massif granitique hercynien des Zaër (Massif Central marocain). C R Acad Sci Paris 294:139–143

    Google Scholar 

  • Goldstein RH (2003) Petrographic analysis of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusion-analysis and interpretation. Mineralogical Association of Canada Short Course Series 32, 9–54.

  • Hall DL, Sterner SM, Bodnar RJ (1988) Freezing point depression of NaCl–KCl–H2O solutions. Econ Geol 83:197–202

    Article  Google Scholar 

  • Hanley JJ, Gladney ER (2011) The presence of carbonic-dominant volatiles during the crystallization of sulfide-bearing mafic pegmatites in the North Roby Zone, Lac des Iles Complex, Ontario. Econ Geol 106:33–54

    Article  Google Scholar 

  • Heck ET (1946) Tin and tungsten deposits of French Morocco. Econ Geol 41:383–389

    Article  Google Scholar 

  • Heinrich CA (1990) The chemistry of hydrothermal tin (−tungsten) ore deposition. Econ Geol 85:457–481

    Article  Google Scholar 

  • Heinrich CA (1995) Geothermal evolution and hydrothermal mineral deposition in Sn-(W-base metal) and other granite-related ore systems: some conclusion from Australian examples. In: Thompson J.F.H (ed.), Magmas, fluids, and ore deposits. Mineralogical Association Canada Short Course 23, p. 203–220.

  • Henley RW, McNab A (1978) Magmatic vapour plumes and groundwater interaction in porphyry copper emplacement. Econ Geol 73:1–20

    Article  Google Scholar 

  • Higgins NC (1985) Wolframite deposition in a hydrothermal vein system: the Grey River tungsten prospect, Newfoundland, Canada. Econ Geol 80:1297–1327

    Article  Google Scholar 

  • Huon S (1985) Clivage ardoisier et réhomogénisation isotopique K–Ar dans les schistes paléozoïques du Maroc. Etude microstructurale et isotopique. Conséquences régionales. Unpub. Ph.D Thesis (Doct. 3ème cycle), Institut Louis-Pasteur, University of Strasbourg, Strasbourg, France, 124 pp.

  • Kelly WC, Rye RO (1979) Geologic, fluid inclusion and stable isotope studies of the tin–tungsten deposits of Panasqueira, Portugal. Econ Geol 74:1721–1822

    Article  Google Scholar 

  • Lasri L (1993) Le massif paléozoïque de Alouana: résultats de la prospection géochimique (Maroc oriental). Unpublished B.R.P.M. report, Rabat 482-00GA1-121, p. 33.

  • Liu J, Mao J, Ye H, Zhang W (2011) Geology, geochemistry and age of Hukeng tungsten deposit, Southern China. Ore Geol Rev 43:50–61

    Article  Google Scholar 

  • Lowenstern JB (1994) Dissolved volatile concentrations in an ore-forming magma. Geology 22:893–896

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids: Geological Society of America Bulletin, v., 101, p. 635–643.

  • Marhoumi MR (1984) Données nouvelles sur l'histoire hercynienne de la Meseta orientale du Maroc: l'âge dévonien des schistes de Debdou Mekam. C R Acad Sci Paris 297:67–72

    Google Scholar 

  • Medioni R (1980) Mise au point stratigraphique sur les terrains carbonifères de la bordure septentrionale des Hauts plateaux marocains (Massif de Debdou, boutonnières de Lalla Mimouna et du Mekam). Notes et Mem Serv Geol Maroc 252:25–37

    Google Scholar 

  • Meinert LD (1993) Skarns and skarn deposits. In: Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., and Duke, J.M., eds., Mineral deposits modeling: Geological Association of Canada Special Paper 40, p. 569–583.

  • Naumov VB, Dorofeev A, Mironova OF (2011) Physicochemical parameters of the formation of hydrothermal deposits: a fluid inclusion study. I. Tin and tungsten deposits. Geochem Int 49(10):1002–1021

    Article  Google Scholar 

  • Nerci K (2006) Les minéralisations aurifères du district polymétallique de Tighza (Maroc central): un exemple de mise en place périgranitique tardi-hercynienne. Unpub. Ph.D Thesis (University of Québec at Montréal, Montreal, Canada/Institut des Sciences de la Terre, Orléans, France, 239 pp.

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral 16:491–559

    Google Scholar 

  • Poty B, Leroy J, Jachimowicz L (1976) Un nouvel appareil pour la mesure des températures sous microscope: l'installation de microthermométrie Chaixmeca. Bulletin de la Société Française de Minéralogie et Cristallographie 99:182–186

    Google Scholar 

  • Ramboz C, Pichavant M, Weisbrod A (1992) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data. Chem Geol 37:29–48

    Article  Google Scholar 

  • Ramdohr P (1969) The ore minerals and their intergrowths, 3rd edn. Pergamon Press, London, p 1174

    Google Scholar 

  • Roedder E (1971) Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ Geol 66:98–120

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev Mineral 12:646

    Google Scholar 

  • Rosé F (1987) Les types granitiques du Maroc hercynien. Unpub. Ph.D Thesis (Doct. Etat), University of Paris VI, Paris, France, 361 pp.

  • Sharp ZD (1990) A laser-based microanalytical method for in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357

    Article  Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie and Son, New York, p 239

    Google Scholar 

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters. Rev Mineral 16:165–183

    Google Scholar 

  • Sonnet PM, Verkaeren J (1989) Scheelite-, malayaite-, axinite-bearing skarns from El Hamman, Central Morocco. Econ Geol 84:575–590

    Article  Google Scholar 

  • Spycher NF, Reed MH (1986) Boiling of geothermal waters: precipitation of base and precious metals, speciation of arsenic and antimony, and the role of gas metal transport. In: Jackson, K.J., Bourcier, W.L., (eds.), Proceedings of the workshop on geochemical modelling, CONF-8609134: California, Lawrence Livermore Natl. Lab., p. 58–65.

  • Sterner SM, Hall DL, Bodnar RJ (1988) Synthetic fluid inclusions: V. Solubility relations in the system NaCl–KCl–H2O under vapor saturated conditions. Geochim Cosmochim Acta 52:989–1005

    Article  Google Scholar 

  • Streckeisen AL (1974) Classification and nomenclature of plutonic rocks. Recommendations of the IUGS subcommission on the systematics of igneous rocks. Geologishe Rundschau 63:773–785

    Article  Google Scholar 

  • Talha M (1996) Etude pétrographique et géochimique des massifs granitiques d'Alouana, Tanncherfi et Zekkara (Maroc oriental) et comparaison par l'analyse discriminante. Unpub. Ph.D Thesis (Doct. National), University Mohammed V, Rabat, Morocco, 159 pp.

  • Targuisti K (1983) Géologie et métallogénie du massif granitique d'Alouana (Maroc oriental). Unpub. Ph.D Thesis (Doct. 3ème cycle), Faculté des Sciences et techniques, University of Franche-Comté, France, 184 pp.

  • Taylor RG (1979) Geology of tin deposits. Elsevier, New York, p 543

    Google Scholar 

  • Termier H, Owodenko B, Agard J (1950) Les gîtes d'étain et de tungstène de la région d'Oulmès (Maroc). Etude géologique, pétrographique et métallogénique. Notes et Mem. Serv. Geol. Maroc, Rabat 252, p 328.

  • Tischendorf G (1977) Geochemical and petrographic characteristics of silicic magmatic rocks associated with rare-element mineralization. In: Metallization associated with acid magmatism: Prague, Czechoslovakia Geological Survey 2, p. 41–96.

  • Tischendorf G, Förster H-J (1990) Acid magmatism and related metallogenesis in the Erzgebirge. Geol J 25:443–454

    Article  Google Scholar 

  • Tisserant D (1977) Les isotopes du strontium et l'histoire hercynienne du Maroc. Etudes de quelques massifs atlasiques et mésétiens. Unpub. Ph.D Thesis (Doct. Etat), Institut Louis-Pasteur, University of Strasbourg, Strasbourg, France, 103 pp.

  • White WH, Bookstrom AA, Kamilli RJ, Ganster MW, Smith RP, Ranta DE, Steininger RC (1981) Character and origin of Climax-type molybdenum deposits. Economic Geology 75TH Anniversary Volume, 270–316.

  • Wood SA, Samson IM (2000) The hydrothermal geochemistry of tungsten in granitoid environment: I. Relative solubilities of ferberite and scheelite as function of T, P, pH, and mNaCl. Econ Geol 95:143–182

    Article  Google Scholar 

  • Yang YF, Li N, Chen YJ (2012) Fluid inclusion study of the Nannihu giant porphyry Mo–W deposit, Henan Province, China: implications for the nature of porphyry ore-fluid systems formed in a continental collision setting. Ore Geol Rev 46:83–94

    Article  Google Scholar 

  • Zheng YF (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the constructive comments on earlier versions of the manuscripts by D.F. Sangster, G. Giuliani, and M.C. Boiron. Special thanks are due to R.J. Bodnar for his valuable help with salinity calculations. E. Cardellach is also acknowledged for providing the δ18O data. The manuscript has been substantially improved by the thorough comments of the two anonymous reviewers and Abdullah M. Al-Amri for his editorial comments; their critical revisions are sincerely acknowledged. This research benefited from the financial support provided through grants from the Programme d'Appui à la Recherche Scientifique of Morocco (PROTARS II/ P23/33) and the Moroccan-Spanish Scientific Research program (188/04/RE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Bouabdellah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadequi, M., Bouabdellah, M., Boushaba, A. et al. Mineralogy, fluid inclusion, and oxygen isotope constraints on the genesis of the Lalla Zahra W-(Cu) deposit, Alouana district, northeastern Morocco. Arab J Geosci 6, 3067–3085 (2013). https://doi.org/10.1007/s12517-012-0571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-012-0571-0

Keywords

Navigation