Skip to main content
Log in

Effects of poultry manure and pistachio compost on the kinetics of copper desorption from two calcareous soils

آثار سماد الدواجن وسماد الفستق على حركية امتزاز النحاس اثنين من التربة الجيرية

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Land disposal of organic waste materials may alter the heavy metal status of the soil by affecting metal solubility or dissociation kinetics. The aim of this investigation was to study the influences of two organic matters (poultry manure and pistachio compost) on copper desorption of two calcareous soils of Iran and determine the best models for description of the kinetics of Cu release in this soils. Organic matters were added to soils at the rate of 300 g kg−1, and samples were incubated at 24–25°C and near field capacity for 90 days. For Cu desorption studies, samples were extracted with 0.01 M EDTA at pH 7.0 with shaker for periods of 5 to 2,880 min. Results showed that during the reaction periods from 5 to 2,800 min, desorption of Cu from two soils increased with time. In the all of samples, copper release was rapid at first and then became slower until equilibrium was approached. In the two soils, desorption of Cu, which increased in poultry manure and decreased in pistachio compost treatments than the control soil, and two-constant rate and simple Elovich were the best equations for description of Cu desorption from soils.

الخلاصة : قد الأراضي المتخلص من مواد النفايات العضوية امکن تغيير وضع المعادن الثقيلة في التربة التي تؤثر على ذوبان المعدن أو حركية التفكك. وكان الهدف من هذا التحقيق دراسة التأثيرات لاثنين من المواد العضوية (روث الدواجن وسماد الفستق) على امتزاز النحاس اثنين من التربة الجيرية من إيران وتحديد أفضل نماذج لوصف حركية الافراج عن النحاس في هذه التربة. تم إضافة المواد العضوية للتربة بمعدل 300 كجم ز - 1 وكانت حضنت العينات في 24–25°C وبالقرب من القذرات الميدانية لمدة 90 يوما. لدراسات امتزاز النحاس ، تم استخراج عينات مع يدتا 0،01 متر في الرقم الهيدروجيني 7،0 مع شاكر لفترات تتراوح بين 5 حتي 2880 دقيقة. وأظهرت النتائج أنه خلال فترات رد الفعل 5 حتي 2800 دقيقة ، الامتزاز من النحاس اثنين من التربة ازداد مع مرور الوقت. في جميع العينات ، والإفراج عن النحاس كان سريعا في البداية ثم أصبحت أبطأ حتى اقترب التوازن. في التربة اثناين ، الامتزاز من النحاس ، وزيادة في سماد الدواجن وانخفاض في العلاجات سماد الفستق من السيطرة على الاراضي ، واثناين من المعدلات ثابتة ، و ایلوویج بسيطة كانت أفضل المعادلات لوصف الامتزاز من النحاس ، التربة.الكلمات الرئيسية : التربة الجيرية ، الافراج عن النحاس ، سماد الدواجن ، سماد الفستق

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Environmental Protection Agency

  2. US Environmental Protection Agency

References

  • Arnesen AKM, Singh BR (1999) Plant uptake and DTPA-extractability of Cd, Cu, Ni and Zn in a Norwegian alum shale soil as affected by previous addition of dairy and pig manures and peat. Can J Soil Sci 78:531–539

    Article  Google Scholar 

  • Baker DE (1990) Copper. In: Alloway BJ (ed) Heavy metals in soils. Blackie and Sons Ltd., London, pp 151–176

    Google Scholar 

  • Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50:807–811

    Article  Google Scholar 

  • Chien SH, Clayton WR (1980) Applicationof Elovich equation to the kinetics of phosphaterelease and sorption in soils. Soil Sci Soc Am J 44:265–268

    Article  Google Scholar 

  • Dang YP, Dalal DG, Edwards DG, Tiller KG (1994) Kinetics of zinc desorption from Vertisols. Soil Sci Soc Am J 58:1392–1399

    Article  Google Scholar 

  • Del Castilho P, Chardon WJ, Salomons W (1993) Influence of cattle-manure slurry application on the solubility of Cd, Cu, and Zn in a manured acidic, loamy sand soil. J Environ Qual 22:689–697

    Article  Google Scholar 

  • Elkhatib EA, Mahdy AM, Saleh ME, Barakat NH (2007) Kinetics of copper desorption from soils was affected by different organic ligands. J Environ Sci Technol 4:331–338

    Google Scholar 

  • Elliott HA, Liberati MR, Huang CP (1986) Competitive adsorption of heavy metals by soils. J Environ Qual 15:214–219

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis. ASA, SSSA, Madison, pp 383–409

    Google Scholar 

  • Ghasemi Fasaei R, Maftoun M, Ronaghi A, Karimian N, Yasrebi J, Assad MT, Ippolito JA (2006) Kinetics of copper desorption from highly calcareous soils. Commun Soil Sci Plant Anal 37:797–809

    Article  Google Scholar 

  • Havlin JL, Westfall DG, Olsen SR (1985) Mathematical models for potassium release kinetics in calcareous soils. Soil Sci Soc Am J 49:371–376

    Article  Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SA, Nelson WL (1999) Soil fertility and fertilizers: an introduction to nutrient management, 6th edn. Prentice Hall, Upper Saddle River, NJ pp 265–270

  • Jackson ML (1967) Soil chemical analysis. Prentice Hall of India Private Limited, New Delhi

    Google Scholar 

  • Kandpal G, Srivastava PC, Ram B (2005) Kinetics of desorption of heavy metals from polluted soils: influence of soil type and metal source. Water Air Soil Pollu 161:353–363

    Article  Google Scholar 

  • Karaca A (2004) Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma 122:297–303

    Article  Google Scholar 

  • Khater AH, Zaghloul AM (2002) Copper and zinc desorption kinetics from soil: effect of pH, paper presented at the 17th World Conference on Soil Science, Thailand, Symposium. No. 47, August 1–9, 2001

  • Krishnamurti GSR, Huang PM, Kozek LM (1999) Sorption and desorption kinetics of cadmium from soils: influence of phosphate. Soil Sci 164:888–898

    Article  Google Scholar 

  • Krogstad T (1983) Effect of liming and decomposition on chemical composition, ion exchange and heavy metal ion selectivity in sphagnum peat. Scientific Reports of the Agricultural University of Norway AAS, Norway p, 79

    Google Scholar 

  • Lo KSL, Yang WF, Lin YC (1992) Effects of organic matter on the specific adsorption of heavy metals by soil. Toxicol Environ Chem 34:139–153

    Article  Google Scholar 

  • McBride MB (1978) Transition metal bonding in humic acid: an ESR study. Soil Sci 126(4):200–209

    Article  Google Scholar 

  • McGrath SP, Sanders JR, Shabaly MH (1988) The effects of soil organic matter levels on soil solution concentrations and extractabilities of manganese zinc and copper. Geoderma 42:177–188

    Article  Google Scholar 

  • Ministry of Agriculture, Fisheries and Food (1993) Review of the rules for sewage sludge application to agricultural land: soil fertility aspects of potentially toxic elements. Report of Independent Scientific Committee PB 1561. MADD Publ, London

    Google Scholar 

  • Nelson RE (1982) Carbonate and gypsum. In: Page AL (ed) Method of soil analysis, Part 2, Agron Monogr. 9, 2nd edn. ASA and SSSA, Madison, pp 181–197

    Google Scholar 

  • Olsen SR, Cole CV, Watanabe ES, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA circular 939. USA Government Printing Office, Washington DC

    Google Scholar 

  • Ramadan MAE, El-Bassiony AM, Hoda AM (2008) Behaviour of some micronutrients in soil and tomato plant organs under different levels and types of fertilizers. Aust J Basic Appl Sci 2(2):288–295

    Google Scholar 

  • Rhoades JD (1996) Salinity: electrical conductivity and total dissolved solids. In: Sparks DL (ed) Methods of soil analysis Part3: chemical methods. SSSA, Madison, pp 417–435

    Google Scholar 

  • Singh RR, Prasad B, Choudhary SN (1994) Desorption of copper in calcareous soils. J Indian Soc Soil Sci 42:555–558

    Google Scholar 

  • Sparks DL (2003) Environmental soil chemistry, 2nd edn. Academic, New York

    Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Steel RGD, Torrie JH (1960) Principles and procedures of statistics. McGraw-Hill, New York

    Google Scholar 

  • Stevenson FJ, Fitch A (1981) Reactions with organic matter. In: Loneragan JF et al (eds) Copper in soils and plants. Academic, Sydney, Australia, pp 69–95

    Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL (ed) Methods of soil analysis Part 3, chemical methods. SSSA, Madison, pp 1201–1229

    Google Scholar 

  • Temminghoff EJM, Van Der Zee SEAT, Dehaan FAM (1998) Effects of dissolved organic matter on the mobility of copper in a contaminated sandy soil. Eur J Soil Sci 49:617–628

    Article  Google Scholar 

  • Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL (ed) Methods of soil analysis Part 3, Chemical methods. SSSA, Madison, pp 475–490

    Google Scholar 

  • USEPA (1999) The EPA Region III risk-based concentration table. USEPA, Philadelphia, PA. Viro PJ, 1955. Use of ethylenediaminetetraacetic acid in soil analysis. I Exp Soil Sci 79:459–465

    Google Scholar 

  • Viro PJ (1955) Use of ethylenediaminetetraacetic acid in soil analysis. I Exp Soil Sci 79:459–465

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Mahan international center of science high technology and environmental sciences for Excellences for financial and technical supports of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Fekri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadegh, L., Fekri, M. & Gorgin, N. Effects of poultry manure and pistachio compost on the kinetics of copper desorption from two calcareous soils. Arab J Geosci 5, 571–578 (2012). https://doi.org/10.1007/s12517-010-0211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-010-0211-5

Keywords

Navigation