Skip to main content
Log in

Occurrence of Uranium in Groundwater Along the Lithological Contacts in Central Tamilnadu, India: An Isotope Hydrogeochemical Perspective

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

Groundwater contributes to the highest exposure level of naturally occurring uranium (U) to biosphere, and hence, the source and concentration of uranium in groundwater needs to be monitored periodically. In the present study, groundwaters from different lithologic locations were collected and measured for uranium concentration and major ions in order to establish any possible link with the lithology on the uranium distribution in central parts of Tamil Nadu, South India. About 11% of the samples contain U in excess of the permissible limit of WHO (Guidelines for drinking-water quality, WHO, Geneva, 2011), and the contamination was limited to mostly hard rock terrain, which is granitic in nature. The correlations among U, major ions, and environmental isotopes were studied to understand the mechanism governing uranium dissolution and transport in groundwater of this region. Observations lead us to infer that the older water with near-neutral pH and oxidizing condition contains higher dissolved U compared with relatively young groundwater. The results also reflect the possible health risk to the local population through long-term consumption of uranium-containing groundwater without any pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alrakabi M, Singh G, Bhalla A, Kumar S, Kumar S, Srivastava A, Rai B, Singh N, Shahi JS, Mehta D (2012) Study of uranium contamination of ground water in Punjab state, in India using X-ray fluorescence technique. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-011-1585-x

    Article  Google Scholar 

  • Ansoborlo E, Jacobs LL, Prat O (2015) Uranium in drinking-water: a unique case of guideline value increases and discrepancies between chemical and radiochemical guidelines. Environ Int 77:1–4

    Article  CAS  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. CRC Press, Boca Raton, ISBN 9780415364218 - CAT# SW1652

  • Arey JS, Seaman JC, Bertsch PM (1999) Immobilization of uranium in contaminated sediments by hydroxyapatite addition. Environ Sci Technol 33:337–342

    Article  CAS  Google Scholar 

  • Arzuaga X, Rieth SH, Bathija A, Cooper GS (2010) Renal effects of exposure to natural and depleted uranium: a review of the epidemiologic and experimental data. J Toxicol Environ Health B 13:527–545

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1999) Toxicological profile for uranium. Atlanta. www.atsdr.cdc.gov/toxprofiles/tp150.html

  • Babu MNS, Somashekar RK, Kumar SA, Shivanna K, Krishnamurthy V, Eappen KP (2008) Concentration of uranium levels in ground water. Int J Environ Sci Technol 5(2):263–266

    Article  CAS  Google Scholar 

  • Bajwa BS, Kumar S, Singh S, Sahoo SK, Tripathi RM (2015) Uranium and other heavy toxic elements distribution in the drinking water samples of SW-Punjab, India. J Radiat Res Appl Sci 10(1):13–19

    Article  CAS  Google Scholar 

  • Balbudhe Y, Srivastava SK, Vishwaprasad K, Srivastava GK, Tripathi RM, Puranik VD (2011) Assessment of age dependent uranium intake due to drinking water in Hyderabad, India. Radiat Prot Dosim 148(4):502–506

    Article  CAS  Google Scholar 

  • Bansal V, Azam A, Srivastava DS (1985) Measurement of uranium content of water using plastic track detectors. In: Sharma KK (ed) Application to earth sciences. IV National Seminar-Cum-Workshop on SSNTDs, vol 14. Shiva Offset Press, Dehradun, pp 89–98

  • Bansal V, Tyagi RK, Prasad R (1988) Determination of uranium concentration in drinking water samples by fission track method. J Radiol Nucl Chem 125:439–443

    Article  CAS  Google Scholar 

  • Bhangare RC, Tiwari M, Ajmal PY, Sahu SK, Pandit GG (2013) Laser flourimetric analysis of uranium in water from Vishakhapatnam and estimation of health risk. Radiat Prot Environ 36(3):128–132

    Article  Google Scholar 

  • Bleise A, Danesi PR, Burkart W (2003) Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 64:93–112

    Article  CAS  Google Scholar 

  • Brindha K, Elango L (2013) Occurrence of uranium in groundwater of a shallow granitic aquifer and its suitability for domestic use in southern India. J Radioanal Nucl Chem 295:357–367. https://doi.org/10.1007/s10967-012-2090-6

    Article  CAS  Google Scholar 

  • Brindha K, Rajesh R, Murugan R, Elango L, Nair RN (2010) Spatial and seasonal variation in groundwater level and uranium concentration in Peddagattu and Seripalli area of Nalgonda District, Andhra Pradesh, India. In Proceedings of the Seventh National Symposium on Environment, pp 256–260

  • Brugge D, Buchner V (2011) Health effects of uranium: new research findings. Rev Environ Health 26:231–249

    CAS  Google Scholar 

  • Brugge D, de Lemos JL, Oldmixon B (2005) Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. Rev Environ Health 20:177–193

    Article  CAS  Google Scholar 

  • Catalano JG, Brown GE (2005) Uranyl adsorption onto montmorillonite: evaluation of binding sites and carbonate complexation. Geochem Cosmochim Acta 69(12):2995–3005

    Article  CAS  Google Scholar 

  • CGWB (2008) Central Ground Water Board, Annual report 2008–2009

  • Chidambaram S, Prasanna MV, Karmegam U, Singaraja C, Pethaperumal S, Manivannan R, Anandhan P, Tirumalesh K (2011) Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region, India. Front Earth Sci 5(2):197–206. https://doi.org/10.1007/s11707-011-0170-5

    Article  CAS  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York, p 328

    Google Scholar 

  • Clark DL, Hobart DE, Neu MP (1995) Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem Rev 95:25–48

    Article  CAS  Google Scholar 

  • Cothern RC, Lappenbusch WL (1983) Occurrence of Uranium in Drinking Water in the US. Health Phys 45(1):89–99

    Article  CAS  Google Scholar 

  • Dahlkamp FJ (1993) Uranium ore deposits. Springer, Berlin, p 460

    Book  Google Scholar 

  • Davis JA, Curtis GP (2004) Application of surface complexation modeling to describe uranium (VI) adsorption and retardation at the Uranium Mill Tailings Site at Naturita, Colo. U.S. Nuclear Regulatory Commission, Rockville

    Google Scholar 

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, N.Y.

    Google Scholar 

  • Drever JL (1997) The geochemistry of natural waters—surface and groundwater, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Durbin PW (1984) Metabolic model for uranium. In: Moore RH (ed) Biokinetics and analysis in man 1984. United States Uranium Registry, National Technical Information Service, Springfield

    Google Scholar 

  • Garg VK, Yadav A, Singh K, Singh M, Bishnoi M, Pulhani V (2014) Uranium Concentration in Groundwater in Hisar City, India. Int J Occup Environ Med\ 5:112–114

    CAS  Google Scholar 

  • Gascoyne M (1989) High levels of uranium and radium in ground waters at Canada’s Underground Research Laboratory, Lac du Bonnet, Manitoba, Canada. Appl Geochem 4:577–591

    Article  CAS  Google Scholar 

  • GSI (2006) Geology and mineral resources of the states of India. Part VI—Tamil Nadu and Pondicherry

  • Health Physics Society (2002) Ask the expert. http://www.hps.org/publicinformation/ate/q1906.html

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. Department of the Interior, US Geological Survey, Reston USGS water supply paper

    Google Scholar 

  • Higgo JJW, Kinniburgh DG, Smith B, Tipping E (1993) Complexation of Co+2 , Ni+2 , UO22+ and Ca2+ by humic substances in groundwaters. Radiochim Acta 61:91–103

    Article  CAS  Google Scholar 

  • His CKD, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim Cosmochim Acta 49:1931–1941

    Article  Google Scholar 

  • International Atomic Energy Agency (IAEA) (1996) World distribution of uranium deposits (map rolled). IAE, Vienna

    Google Scholar 

  • Irwin RJ (1997) Environmental contaminants encyclopedia, Uranium entry. National Park Service, Fort Collins

    Google Scholar 

  • Ivanovich M, Fröhlich K, Hendry MJ (1991) Uranium-series radionuclides in fluids and solids, Milk River aquifer, Alberta, Canada. Appl Geochem 6:405–418

    Article  CAS  Google Scholar 

  • Kansal S, Mehra R, Singh NP (2011) Uranium concentration inground water samples belonging to some areas of Western Haryana, India, using fission track registration technique. J Public Health Epidemiol 3:352–357

    Google Scholar 

  • Keesari T, Mohokar HV, Sahoo BK, Mallesh G (2014) Assessment of environmental radioactive elements in groundwater in parts of Nalgonda district, Andhra Pradesh, South India using scintillation detection methods. J Radioanal Nucl Chem 302(3):1391–1398

    Article  CAS  Google Scholar 

  • Kim JI (1986) Chemical behaviour of trans uranic elements in natural aquatic systems. In: Keller FAJ (ed) Handbook on the physics and chemistry of the actinides. Elsevier Science Publisher, Amsterdam, pp 413–455

    Google Scholar 

  • Kim YS, Park HS, Kim JY, Park SK, Cho BW, Sung IH, Shin DC (2004) Health risk assessment for uranium in Korean groundwater. J Environ Radioact 77(1):77–85

    Article  CAS  Google Scholar 

  • Kochhar N, Gill GS, Tuli N, Dadwal V, Balaram V (2003) Chemical quality of groundwater in relation to incidence of cancer in parts of SW Punjab, India. Asian J Water Environ Pollut 4:107–112

    Google Scholar 

  • Krestou A, Panias D (2004) Uranium (VI) speciation diagrams in the UO22+/CO32−/H2O system at 25°C. Eur J Miner Process Environ Prot 4(2):113–129 1303–0868

    Google Scholar 

  • Kurttio P, Auvinen A, Salonen L, Saha H, Pekkanen J, Mäkeläinen I, Väisänen SB, Penttilä IM, Komulainen H (2002) Renal effects of uranium in drinking water. Environ Health Perspect 110(4):337–342

    Article  CAS  Google Scholar 

  • Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42(6):547–569

    Article  CAS  Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall Inc, Upper Saddle River, p 600

    Google Scholar 

  • Leggett RW (1989) The behaviour and chemical toxicity of U in the kidney: a reassessment. Health Phys 57(3):365–383

    Article  CAS  Google Scholar 

  • Mao Y, Desmeules M, Schaubel D, Berube D, Dyck R, Brule D, Thomas B (1995) Inorganic components of drinking water and microalbuminuria. Environ Res 71:135–140

    Article  CAS  Google Scholar 

  • McDonald-Taylor CK, Singh A, Gilman A (1997) Uranyl nitrate-induced proximal tubule alterations in rabbits: a quantitative analysis. J Toxicol Pathol 25(4):381–389

    Article  CAS  Google Scholar 

  • Meher PK, Sharma P, Khare A, Mishra KP (2015) Uranium in ground water of Eastern Uttar Pradesh, India: a preliminary study. Int Res J Environ Sci 4(6):70–74

    Google Scholar 

  • Mehra R, Singh S, Singh K (2007) Uranium studies in water samples belong to malwa region in Punjab by track etching technique. Radiat Meas 42(3):441–445

    Article  CAS  Google Scholar 

  • Meinrath A, Schneider P, Meinrath G (2003) Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany. J Environ Radioact 64:175–193

    Article  CAS  Google Scholar 

  • Pant D, Keesari T, Sharma D, Rishi M, Singh G, Jaryal A, Tripathi RM (2017) Study on uranium contamination in groundwater of Faridkot and Muktsar districts of Punjab using stable isotopes of water. J Radioanal Nucl Chem 313(3):635–639

    Article  CAS  Google Scholar 

  • Piirainen T (1968) Die petrologie un die Uranlägerstatten desKoli-Kaltimogebiets in Finnischen Nordkarelien. Bulletindes Commentaires Geológiques Finlande 237:1–99

    Google Scholar 

  • Porcelli D, Swarzenski PW (2003) The behavior of U- and Th-series nuclides in groundwater. Rev Mineral Geochem 52:317–361 (Uranium-Series Geochemistry)

    Article  CAS  Google Scholar 

  • Ramola RC, Singh S, Virk HS (1988) Uranium and radon estimation in some water samples from Himalayas Part D. Nucl Tracks Radiat Meas 15(1–4):791–793

    Article  CAS  Google Scholar 

  • Rani A, Singh S (2006) Analysis of uranium in drinking water samples using laser induced fluorimetry. Health Phys 91:101–107

    Article  CAS  Google Scholar 

  • Rani A, Mehra R, Duggal V, Balaram V (2013) Analysis of uranium concentration in drinking water samples using icpms. Health Phys 104(3):251–255

    Article  CAS  Google Scholar 

  • Rao SR, Shah SM (1976) Elemental contents in environmental samples. BARC, Mumbai

    Google Scholar 

  • Rishi MS, Keesari T, Sharma DA, Pant D, Sinha UK (2017) Spatial trends in uranium distribution in groundwaters of Southwest Punjab, India-A hydrochemical perspective. J Radioanal Nucl Chem 311(3):1937–1945

    Article  CAS  Google Scholar 

  • Runde W (2000) The chemical interactions of actinides in the environment. Los Alamos Sci 26:392–411

    CAS  Google Scholar 

  • Sahu SK, Maity S, Bhangare RC, Pandit GG, Sharma DN (2014) Determination of uranium in ground water using different analytical techniques Government of India Atomic Energy Commission, Bhabha Atomic Research Centre, Mumbai, BARC/2014/E/011, pp 30

  • Saric MR, Stojanovic M, Babic M (1995) Uranium in plant species grown on natural barren soil. J Plant Nutr 18:1509–15018

    Article  CAS  Google Scholar 

  • Sethy NK, Tripathi RM, Jha VN, Sahoo SK, Shukla AK, Puranik VD (2011) Assessment of natural uranium in the ground water around Jaduguda Uranium Mining Complex, India. J Environ Prot 2:1002–1007

    Article  CAS  Google Scholar 

  • Sharma DA, Rishi MS, Singh R, Pant D, Keesari T, Sinha UK (2017) Groundwater chemistry and uranium distribution in Southwest Punjab-findings from isotope hydrochemical study. In Proceedings of the thirteenth DAE-BRNS nuclear and radiochemistry symposium

  • Sharp JM (2014) Uranium distribution in ground water from fractured crystalline aquifers in Norway, Fractured rock hydrogeology. CRC Press, Boca Raton, p 271

    Google Scholar 

  • Sheppard SC, Evenden WG, Pollock RJ (1989) Uptake of natural radionuclides by field and garden crops. Can J Soil Sci 69:751–767

    Article  CAS  Google Scholar 

  • Singh J, Singh L, Singh S (1995) High U-contents observed in some drinking waters of Punjab, India. J Environ Radioact 26(3):217–222

    Article  CAS  Google Scholar 

  • Singh P, Rana NPS, Azam A, Naqvi AH, Srivastava DS (1996) Levels of uranium in waters from some Indian cities determined by fission track analysis. Radiat Meas 26(5):683–687

    Article  CAS  Google Scholar 

  • Singh B, Singh G, Sandhu AS, Singh S (1999) Uranium estimation in water samples collected from some areas of Himachal Pradesh, India. Radiat Meas 31:683–685

    Article  CAS  Google Scholar 

  • Singh S, Malhotra R, Kumar J, Singh B, Singh L (2001) Uranium analysis of geological samples, water and plants from Kulu Area, Himachal Pradesh, India. Radiat Meas 34:427–431

    Article  CAS  Google Scholar 

  • Singh S, Rani A, Mahajan RK, Singh Walia TP (2003) Analysis of uranium and its correlation with some physicochemical properties of drinking water samples from Amritsar, Punjab. J Environ Monit 5:917–921

    Article  CAS  Google Scholar 

  • Singh H, Singh J, Singh S, Bajwa BS (2009a) Uranium concentration in drinking water samples using the SSNTDs. Indian J Phys 83(7):1039–1044

    Article  CAS  Google Scholar 

  • Singh J, Singh H, Singh S, Bajwa BS (2009b) Estimation of uranium and radon concentration in some drinking water samples of Upper Siwaliks, India. Environ Monit Assess 154:15–22. https://doi.org/10.1007/s10661-008-0373-8

    Article  CAS  Google Scholar 

  • Singh B, Kishore N, Garg VK, Pulhani V, Yadav P (2014) Uranium in groundwater from Western Haryana. J Radioanal Nucl Chem, India. https://doi.org/10.1007/s10967-014-3133-y

    Book  Google Scholar 

  • Talukdar BC, Chaudhary PK, Pathak KM (1983) On uranium concentration in water. J Pure Appl Phys 21:381–382

    CAS  Google Scholar 

  • Tanner AB (1980) Radon migration in the ground: a supplementary review. In: Gesell TF, Lowder WM (eds) The natural radiation environment III, National Technical Information Services, Springfield. CONF-780422.1, pp 5–56

  • Thivya C, Chidambaram S, Thilagavathi R, Nepolian M, AdithyaV S (2014) Evaluation of drinking water quality index (DWQI) and its seasonal variations in hard rock aquifers of Madurai district, Tamilnadu. Int J Adv Geosci 2(2):48–52

    Article  Google Scholar 

  • Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58(24):5465–5478

    Article  CAS  Google Scholar 

  • Wazne M, Korfiatis GP, Meng X (2003) Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ Sci Technol 37:3619–3624

    Article  CAS  Google Scholar 

  • White AF, Delany JM, Narasimhan TN, Smith A (1984) Groundwater contamination from an inactive uranium mill tailings pile: 1. Application of a chemical mixing model. Water Resour Res 20(11):1743–1752. https://doi.org/10.1029/WR020i011p01743

    Article  CAS  Google Scholar 

  • WHO (2004) Guidelines for drinking-water quality, recommendations, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  • WHO (World Health Organization) (2006) Guidelines for drinking water quality recommendations, vol 1, 3rd edn. WHO, Geneva, p 515

    Google Scholar 

  • Zamora ML, Tracy BL, Zielinski JM, Meyerhof DP, Moss MA (1998) Chronic ingestion of uranium in drinking water: a study of kidney bioeffects in humans. Toxicol Sci 43:68–77

    Article  CAS  Google Scholar 

  • Závodská L, Kosorínová E, Ščerbáková L, Lesný J (2008) Environmental chemistry of uranium. HEJ, ENV-081221-A, pp 1–19

Download references

Acknowledgements

The authors express their sincere thanks to the Board of Research in Nuclear Sciences (BRNS), India, for providing the necessary financial support to this Research Project vide Ref. No. 2012/35/12/BRNS/1918 dated 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Prasanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adithya, V.S., Chidambaram, S., Keesari, T. et al. Occurrence of Uranium in Groundwater Along the Lithological Contacts in Central Tamilnadu, India: An Isotope Hydrogeochemical Perspective. Expo Health 11, 277–290 (2019). https://doi.org/10.1007/s12403-017-0269-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-017-0269-3

Keywords

Navigation