Skip to main content
Log in

The Incorporation of Carotenoids on Ready to Eat Foods Studied Through Their Stability During Extrusion Processing

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Studies have reported evidence that consumption of carotenoids provides many health benefits. Therefore, assuring the maintenance of their nutritional/nutraceutical properties after food processing is gaining increasing interest. Products such as breakfast cereals and ready-to-eat snacks are commonly consumed foods that potentially could serve as ideal vehicles of bioactive compounds, such as carotenoids. Some of these foods are produced by extrusion. The impact of the extrusion process on bioactive compounds is harsh and may require control of the processing conditions to alleviate the negative effects of the process on the product’s nutritional quality. Extrusion process parameters, such as temperature, screw speed, shear rate, and the feed moisture content, can affect the retention of carotenoids in the final product. The influence of those parameters on products is discussed in this review, taking into account aspects of carotenoid stability and the conservation of its nutritional properties. Further, some strategies to increase carotenoid retention during extrusion processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bernal J, Mendiola JA, Ibáñez E, Cifuentes A (2011) Advanced analysis of nutraceuticals. J Pharm Biomed Anal 55(4):758–774. https://doi.org/10.1016/j.jpba.2010.11.033

    Article  CAS  PubMed  Google Scholar 

  2. Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V (2014) Functional ingredients from microalgae. Food Funct 5(8):1669–1685. https://doi.org/10.1039/c4fo00125g

    Article  CAS  PubMed  Google Scholar 

  3. Christaki E, Bonos E, Giannenasa I, Florou-Paneria P (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93(1):5–11. https://doi.org/10.1002/jsfa.5902

    Article  CAS  PubMed  Google Scholar 

  4. Ndiaye C, Martinez MM, Hamaker BR, Campanella OH, Ferruzzi MG (2020) Effect of edible plant materials on provitamin A stability and bioaccessibility from extruded whole pearl millet (P. typhoides) composite blends. LWT 123(July 2019):109109. https://doi.org/10.1016/j.lwt.2020.109109

  5. Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9(4):625–644. https://doi.org/10.3390/md9040625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Obradović V, Babić J, Šubarić D, Ačkar Đu, Jozinović A (2014) Improvement of nutritional and functional properties of extruded food products. Journal of Food and Nutrition Research 53(3):189–206

    Google Scholar 

  7. Potter R, Stojceska V, Plunkett A (2013) The use of fruit powders in extruded snacks suitable for children’s diets. LWT Food Sci Technol 51(2):537–544. https://doi.org/10.1016/j.lwt.2012.11.015

    Article  CAS  Google Scholar 

  8. Bouvier J-M, Campanella OH (2014) Extrusion processing technology. Extrusion Processing Technology. https://doi.org/10.1002/9781118541685

    Article  Google Scholar 

  9. Brennan MA, Derbyshire E, Tiwari BK, Brennan CS (2013) Ready-to-eat snack products: the role of extrusion technology in developing consumer acceptable and nutritious snacks. Int J Food Sci Technol 48(5):893–902. https://doi.org/10.1111/ijfs.12055

    Article  CAS  Google Scholar 

  10. Cheftel JC (1986) Nutritional effects of extrusion-cooking. Food Chem 20(4):263–283. https://doi.org/10.1016/0308-8146(86)90096-8

    Article  CAS  Google Scholar 

  11. Singh S, Gamlath S, Wakeling L (2007) Nutritional aspects of food extrusion: a review. Int J Food Sci Technol 42(8):916–929. https://doi.org/10.1111/j.1365-2621.2006.01309.x

    Article  CAS  Google Scholar 

  12. Emin MA, Mayer-Miebach E, Schuchmann HP (2012) Retention of β-carotene as a model substance for lipophilic phytochemicals during extrusion cooking. LWT Food Sci Technol 48(2):302–307. https://doi.org/10.1016/j.lwt.2012.04.004

    Article  CAS  Google Scholar 

  13. Waramboi JG, Gidley MJ, Sopade PA (2013) Carotenoid contents of extruded and non-extruded sweet potato flours from Papua New Guinea and Australia. Food Chem 141(3):1740–1746. https://doi.org/10.1016/j.foodchem.2013.04.070

    Article  CAS  PubMed  Google Scholar 

  14. Gouveia L, Empis J (2003) Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: effect of storage conditions. Innov Food Sci Emerg Technol 4(2):227–233. https://doi.org/10.1016/S1466-8564(03)00002-X

    Article  CAS  Google Scholar 

  15. Martínez-Delgado AA, Khandual S, Villanueva-Rodríguez SJ (2017) Chemical stability of astaxanthin integrated into a food matrix: effects of food processing and methods for preservation. Food Chem 225:23–30. https://doi.org/10.1016/j.foodchem.2016.11.092

    Article  CAS  PubMed  Google Scholar 

  16. Robert P, Carlsson RM, Romero N, Masson L (2003) Stability of spray-dried encapsulated carotenoid pigments from rosa mosqueta (Rosa rubiginosa) oleoresin. J Am Oil Chemists’ Soc 80(11):1115–1120. https://doi.org/10.1007/s11746-003-0828-4

    Article  CAS  Google Scholar 

  17. Stahl W, Sies H (1996) Perspective in biochemistry and biophysics lycopene: a biologically important carotenoid for humans? Archives of Biochemi Biophys 336(1):1–9. http://ac.els-cdn.com/S0003986196905251/1-s2.0-S0003986196905251-main.pdf?_tid=1a52a3bc-45b9-11e7-9026-00000aab0f26&acdnat=1496204877_5bcc9cb031a59720044433e697962ab9

  18. Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9(15):1551–1558. https://doi.org/10.1096/fasebj.9.15.8529834

    Article  CAS  PubMed  Google Scholar 

  19. Jaswir I, Noviendri D, Hasrini RF, Octavianti F (2011) Carotenoids: sources, medicinal properties and their application in food and nutraceutical industry. J Medicinal Plant Res 5(33):7119–7131. https://doi.org/10.5897/JMPRx11.011

    Article  CAS  Google Scholar 

  20. Oroian M, Escriche I (2015) Antioxidants: characterization, natural sources, extraction and analysis. Food Res Int 74:10–36. https://doi.org/10.1016/j.foodres.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  21. Priyadarshani AMB, Jansz ER (2014) A critical review on carotenoid research in Sri Lankan context and its outcomes. Crit Rev Food Sci Nutr 54(5):561–571. https://doi.org/10.1080/10408398.2011.595019

    Article  CAS  PubMed  Google Scholar 

  22. Kolniak-Ostek J, Kita A, Pęksa A, Wawrzyniak A, Hamułka J, Jeznach M, Danilčenko H, Jariene E (2017) Analysis of the content of bioactive compounds in selected flours and enriched extruded corn products. J Food Compos Anal 64(Aug):147–155. https://doi.org/10.1016/j.jfca.2017.08.008

    Article  CAS  Google Scholar 

  23. Yara-Varón E, Fabiano-Tixier AS, Balcells M, Canela-Garayoa R, Bily A, Chemat F (2016) Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv 6(33):27750–27759. https://doi.org/10.1039/c6ra03016e

    Article  Google Scholar 

  24. Chávez-Jáuregui RN, Santos RD, Macedo A, Chacra APM, Martinez TL, Arêas JAG (2010) Effects of defatted amaranth (Amaranthus caudatus L.) snacks on lipid metabolism of patients with moderate hypercholesterolemia. Ciencia e Tecnologia de Alimentos 30(4):1007–1010. https://doi.org/10.1590/S0101-20612010000400026

  25. Gammone MA, Riccioni G, D’Orazio N (2015) Carotenoids: Potential allies of cardiovascular health? Food Nutr Res 59. https://doi.org/10.3402/fnr.v59.26762

  26. Khoo HE, Prasad KN, Kong KW, Jiang Y, Ismail A (2011) Carotenoids and their isomers: color pigments in fruits and vegetables. Mole 16(2):1710–1738. https://doi.org/10.3390/molecules16021710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murphy MM, Barraj LM, Spungen JH, Herman DR, Randolph RK (2014) Global assessment of select phytonutrient intakes by level of fruit and vegetable consumption. Br J Nutr 112(6):1004–1018. https://doi.org/10.1017/S0007114514001937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Norfezah MN, Hardacre A, Brennan CS (2011) Comparison of waste pumpkin material and its potential use in extruded snack foods. Food Sci Technol Int 17(4):367–373. https://doi.org/10.1177/1082013210382484

    Article  CAS  PubMed  Google Scholar 

  29. Saini RK, Nile SH, Park SW (2015) Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. 76:735–750

  30. Azevedo-Meleiro CH, Rodriguez-Amaya DB (2004) Confirmation of the identity of the carotenoids of tropical fruits by HPLC-DAD and HPLC-MS. J Food Compos Anal 17(3–4):385–396. https://doi.org/10.1016/j.jfca.2004.02.004

    Article  CAS  Google Scholar 

  31. Perera CO, Yen GM (2007) Functional properties of carotenoids in human health. Int J Food Prop 10(2):201–230. https://doi.org/10.1080/10942910601045271

    Article  CAS  Google Scholar 

  32. Van Hal M (2000) Quality of sweet potato flour during processing and storage. Food Rev Intl 16(1):1–37. https://doi.org/10.1081/FRI-100100280

    Article  Google Scholar 

  33. Koushan K, Rusovici R, Li W, Ferguson LR, Chalam KV (2013) The role of lutein in eye-related disease. Nutrients 5(5):1823–1839. https://doi.org/10.3390/nu5051823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and. Annu Rev Nutr 23(1):171–201. https://doi.org/10.1146/annurev.nutr.23.011702.073307

    Article  CAS  PubMed  Google Scholar 

  35. Breithaupt DE, Weller P, Wolters M, Hahn A (2003) Plasma response to a single dose of dietary β-cryptoxanthin esters from papaya (Carica papaya L.) or non-esterified β-cryptoxanthin in adult human subjects: a comparative study . British J Nutrition, 90(4):795–801. https://doi.org/10.1079/bjn2003962

  36. Goralczyk R (2009) Beta-carotene and lung cancer in smokers: review of hypotheses and status of research. Nutr Cancer 61(6):767–774. https://doi.org/10.1080/01635580903285155

    Article  CAS  PubMed  Google Scholar 

  37. Obulesu M, Dowlathabad MR, Bramhachari PV (2011) Carotenoids and Alzheimer’s disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int 59(5):535–541. https://doi.org/10.1016/j.neuint.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  38. Pasquet V, Morisset P, Ihammouine S, Chepied A, Aumailley L, Berard JB, Serive B, Kaas R, Lanneluc I, Thiery V, Lafferriere M, Piot JM, Patrice T, Cadoret JP, Picot L (2011) Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Mar Drugs 9(5):819–831. https://doi.org/10.3390/md9050819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kotake-Nara E, Asai A, Nagao A (2005) Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Cancer Lett 220(1):75–84. https://doi.org/10.1016/j.canlet.2004.07.048

    Article  CAS  PubMed  Google Scholar 

  40. Kean EG, Hamaker BR, Ferruzzi MG (2008) Carotenoid bioaccessibility from whole grain and degermed maize meal products. J Agric Food Chem 56(21):9918–9926. https://doi.org/10.1021/jf8018613

    Article  CAS  PubMed  Google Scholar 

  41. Carbonell-Capella JM, Buniowska M, Barba FJ, Esteve MJ, Frígola A (2014) Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review. Comprehen Revs in Food Sci and Food Safety 13(2):155–171. https://doi.org/10.1111/1541-4337.12049

    Article  CAS  PubMed  Google Scholar 

  42. Fernández-García E, Carvajal-Lérida I, Jarén-Galán M, Garrido-Fernández J, Pérez-Gálvez A, Hornero-Méndez D (2012) Carotenoids bioavailability from foods: from plant pigments to efficient biological activities. Food Res Int 46(2):438–450. https://doi.org/10.1016/j.foodres.2011.06.007

    Article  CAS  Google Scholar 

  43. Courraud J, Berger J, Cristol JP, Avallone S (2013) Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chem 136(2):871–877. https://doi.org/10.1016/j.foodchem.2012.08.076

    Article  CAS  PubMed  Google Scholar 

  44. Parada J, Aguilera JM (2007) Food microstructure affects the bioavailability of several nutrients. J Food Sci 72(2):21–32. https://doi.org/10.1111/j.1750-3841.2007.00274.x

    Article  CAS  Google Scholar 

  45. Boon CS, McClements DJ, Weiss J, Decker EA (2010) Factors influencing the chemical stability of carotenoids in foods. Crit Rev Food Sci Nutr 50(6):515–532. https://doi.org/10.1080/10408390802565889

    Article  CAS  PubMed  Google Scholar 

  46. Polyakov NE, Leshina TV (2006) Certain aspects of the reactivity of carotenoids. Redox processes and complexation. Rus Chem Rev 75(12):1049–1064. https://doi.org/10.1070/rc2006v075n12abeh003640

  47. Everett SA, Dennis MF, Patel KB, Maddix S, Kundu SC, Willson RL (1996) Scavenging of Nitrogen Dioxide, Thiyl, and Sulfonyl Free Radicals by the Nutritional Antioxidant ²-Carotene. J Biol Chem 271(8):3988–3994

  48. Hill TJ, McGarvey DJ, Tinkler JH, Truscott TG, Land EJ, Schalch W (1995) Interactions between carotenoids and the CCl3O2 radical. J Am Chem Soc 117(32):8322–8326. https://doi.org/10.1021/ja00137a004

    Article  CAS  Google Scholar 

  49. Herrera MA, Sánchez DI, López J, Núñez JA, Moreno OH (2011) Extracción de la astaxantina y su estabilidad. Revista Latinoamericana de Recursos Naturales 7(1):21–27

    Google Scholar 

  50. Fellows PJ (2000) Food processing technology: Principles and Practice, 2nd ed. CRC Press, Boca Raton (Chapter 14)

  51. Riaz MN, Asif M, Ali R (2009) Stability of vitamins during extrusion. Crit Rev Food Sci Nutr 49(4):361–368. https://doi.org/10.1080/10408390802067290

    Article  CAS  PubMed  Google Scholar 

  52. Alam MS, Kaur J, Khaira H, Gupta K (2016) Extrusion and extruded products: changes in quality attributes as affected by extrusion process parameters: a review. Crit Rev Food Sci Nutr 56(3):445–473. https://doi.org/10.1080/10408398.2013.779568

    Article  CAS  PubMed  Google Scholar 

  53. Singh J, Dartois A, Kaur L (2010) Starch digestibility in food matrix: a review. Trends Food Sci Technol 21(4):168–180. https://doi.org/10.1016/j.tifs.2009.12.001

    Article  CAS  Google Scholar 

  54. Gu L, House SE, Rooney LW, Prior RL (2008) Sorghum extrusion increases bioavailability of catechins in weanling pigs. J Agric Food Chem 56(4):1283–1288. https://doi.org/10.1021/jf072742i

    Article  CAS  PubMed  Google Scholar 

  55. Rodríguez-Miranda J, Ruiz-López II, Herman-Lara E, Martínez-Sánchez CE, Delgado-Licon E, Vivar-Vera MA (2011) Development of extruded snacks using taro (Colocasia esculenta) and nixtamalized maize (Zea mays) flour blends. LWT Food Sci Technol 44(3):673–680. https://doi.org/10.1016/j.lwt.2010.06.036

    Article  CAS  Google Scholar 

  56. Brennan MA, Monro JA, Brennan CS (2008) Effect of inclusion of soluble and insoluble fibres into extruded breakfast cereal products made with reverse screw configuration. Int J Food Sci Technol 43(12):2278–2288. https://doi.org/10.1111/j.1365-2621.2008.01867.x

    Article  CAS  Google Scholar 

  57. Alonso R, Orúe E, Marzo F (1998) Effects of extrusion and conventional processing methods on protein and antinutritional factor contents in pea seeds. Food Chem 63(4):505–512. https://doi.org/10.1016/S0308-8146(98)00037-5

    Article  CAS  Google Scholar 

  58. Camire ME, Krumhar K (1990) Chemical and nutritional changes in foods during extrusion. Crit Rev Food Sci Nutr 29(1):35–57. https://doi.org/10.1080/10408399009527513

    Article  CAS  PubMed  Google Scholar 

  59. Brennan C, Brennan M, Derbyshire E, Tiwari BK (2011) Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci Technol 22(10):570–575. https://doi.org/10.1016/j.tifs.2011.05.007

    Article  CAS  Google Scholar 

  60. Ortak M, Caltinoglu C, Sensoy I, Karakaya S, Mert B (2017) Changes in functional properties and in vitro bioaccessibilities of β-carotene and lutein after extrusion processing. J Food Sci Technol 54(11):3543–3551. https://doi.org/10.1007/s13197-017-2812-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Biehler E, Mayer F, Hoffmann L, Krause E, Bohn T (2010) Comparison of 3 spectrophotometric methods for carotenoid determination in frequently consumed fruits and vegetables. J Food Sci 75(1). https://doi.org/10.1111/j.1750-3841.2009.01417.x

  62. Hornero-Méndez D, Mínguez-Mosquera MI (2007) Bioaccessibility of carotenes from carrots: effect of cooking and addition of oil. Innov Food Sci Emerg Technol 8(3):407–412. https://doi.org/10.1016/j.ifset.2007.03.014

    Article  CAS  Google Scholar 

  63. Mulokozi G, Hedrén E, Svanberg U (2004) In vitro accessibility and intake of β-carotene from cooked green leafy vegetables and their estimated contribution to vitamin A requirements. Plant Foods Hum Nutr 59(1):1–9. https://doi.org/10.1007/s11130-004-4305-7

    Article  CAS  PubMed  Google Scholar 

  64. Donhowe EG, Kong F (2014) Beta-carotene: digestion, microencapsulation, and in vitro bioavailability. Food Bioprocess Technol 7(2):338–354. https://doi.org/10.1007/s11947-013-1244-z

    Article  CAS  Google Scholar 

  65. Hedrén E, Diaz V, Svanberg U (2002) Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. Eur J Clin Nutr 56(5):425–430. https://doi.org/10.1038/sj.ejcn.1601329

    Article  PubMed  Google Scholar 

  66. Achir N, Randrianatoandro VA, Bohuon P, Laffargue A, Avallone S (2010) Kinetic study of β-carotene and lutein degradation in oils during heat treatment. Eur J Lipid Sci Technol 112(3):349–361. https://doi.org/10.1002/ejlt.200900165

    Article  CAS  Google Scholar 

  67. Oboh G, Falade AO, Ademiluyi AO (2014) Effect of thermal oxidation on the physico-chemical properties, malondialdehyde and carotenoid contents of palm oil. Rivista Italiana Delle Sostanze Grasse 91(1):59–65

    CAS  Google Scholar 

  68. Selim K, Tsimidou M, Biliaderis CG (2000) Kinetic studies of degradation of saffron carotenoids encapsulated in amorphous polymer matrices. Food Chem 71(2):199–206. https://doi.org/10.1016/S0308-8146(00)00156-4

    Article  CAS  Google Scholar 

  69. Lavelli V, Zanoni B, Zaniboni A (2007) Effect of water activity on carotenoid degradation in dehydrated carrots. Food Chem 104(4):1705–1711. https://doi.org/10.1016/j.foodchem.2007.03.033

    Article  CAS  Google Scholar 

  70. Karel M (1980) Lipid oxidation, secondary reactions, and water activity of foods. In Autoxidation in food and Biol Syst (pp. 191-206). Springer, Boston, MA

  71. Momoi K, Hofmann U, Schmid RD, Urlacher VB (2006) Reconstitution of β-carotene hydroxylase activity of thermostable CYP175A1 monooxygenase. Biochem Biophys Res Commun 339(1):331–336. https://doi.org/10.1016/j.bbrc.2005.11.023

    Article  CAS  PubMed  Google Scholar 

  72. Zepka LQ, Mercadante AZ (2009) Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food Chem 117(1):28–34. https://doi.org/10.1016/j.foodchem.2009.03.071

    Article  CAS  Google Scholar 

  73. Basto GJ, Carvalho CWP, Soares AG, Costa HTGB, Chávez DWH, de GodoyO., & Pacheco, S. RL (2016) Physicochemical properties and carotenoid content of extruded and non-extruded corn and peach palm (Bactris gasipaes, Kunth). LWT Food Sci Technol 69:312–318. https://doi.org/10.1016/j.lwt.2015.12.065

    Article  CAS  Google Scholar 

  74. Burgos G, Amoros W, Salas E, Muñoa L, Sosa P, Díaz C, Bonierbale M (2012) Carotenoid concentrations of native Andean potatoes as affected by cooking. Food Chem 133(4):1131–1137. https://doi.org/10.1016/j.foodchem.2011.09.002

    Article  CAS  Google Scholar 

  75. Dewanto V, Xianzhong W, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50(10):3010–3014. https://doi.org/10.1021/jf0115589

    Article  CAS  PubMed  Google Scholar 

  76. Tiwari U, Cummins E (2009) Nutritional importance and effect of processing on tocols in cereals. Trends Food Sci Technol 20(11–12):511–520. https://doi.org/10.1016/j.tifs.2009.06.001

    Article  CAS  Google Scholar 

  77. Marty C, Berset C (1988) Degradation products of trans-β-carotene produced during extrusion cooking. J Food Sci 53(6):1880–1886. https://doi.org/10.1111/j.1365-2621.1988.tb07866.x

    Article  CAS  Google Scholar 

  78. Guzman-Tello R, Cheftel JC (1990) Colour loss during extrusion cooking of β-carotene-wheat flour mixes as an indicator of the intensity of thermal and oxidative processing. Int J Food Sci Technol 25(4):420–434. https://doi.org/10.1111/j.1365-2621.1990.tb01099.x

    Article  Google Scholar 

  79. Marty C, Berset C (1990) Factors affecting the thermal degradation of all-trans-β-carotene. J Agric Food Chem 38(4):1063–1067. https://doi.org/10.1021/jf00094a033

    Article  CAS  Google Scholar 

  80. Caliskan G, Lim ASL, Roos YH (2015) Beta-carotene stability in extruded snacks produced using interface engineered emulsions. Int J Food Prop 18(10):2256–2267. https://doi.org/10.1080/10942912.2014.973963

    Article  CAS  Google Scholar 

  81. Kaisangsri N, Kowalski RJ, Wijesekara I, Kerdchoechuen O, Laohakunjit N, Ganjyal GM (2016) Carrot pomace enhances the expansion and nutritional quality of corn starch extrudates. LWT Food Sci Technol 68:391–399. https://doi.org/10.1016/j.lwt.2015.12.016

    Article  CAS  Google Scholar 

  82. Tonyali B, Sensoy I, Karakaya S (2016) The effect of extrusion on the functional components and in vitro lycopene bioaccessibility of tomato pulp added corn extrudates. Food Funct 7(2):855–860. https://doi.org/10.1039/c5fo01185j

    Article  CAS  PubMed  Google Scholar 

  83. Cueto M, Farroni A, Schoenlechner R, Schleining G, Buera P (2017) Carotenoid and color changes in traditionally flaked and extruded products. Food Chem 229:640–645. https://doi.org/10.1016/j.foodchem.2017.02.138

    Article  CAS  PubMed  Google Scholar 

  84. Honi B, Mukisa IM, Mongi RJ (2018) Proximate composition, provitamin A retention, and shelf life of extruded orange-fleshed sweet potato and bambara groundnut-based snacks. J Food Process Preserv 42(1):1–8. https://doi.org/10.1111/jfpp.13415

    Article  CAS  Google Scholar 

  85. Ortiz D, Ponrajan A, Bonnet JP, Rocheford T, Ferruzzi MG (2018) Carotenoid stability during dry milling, storage, and extrusion processing of biofortified maize genotypes [research-article]. J Agric Food Chem 66(18):4683–4691. https://doi.org/10.1021/acs.jafc.7b05706

    Article  CAS  PubMed  Google Scholar 

  86. Oliveira A, Pintado M, Almeida DPF (2012) Phytochemical composition and antioxidant activity of peach as affected by pasteurization and storage duration. LWT Food Sci Technol 49(2):202–207. https://doi.org/10.1016/j.lwt.2012.07.008

    Article  CAS  Google Scholar 

  87. Rawson A, Patras A, Tiwari BK, Noci F, Koutchma T, Brunton N (2011) Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Res Int 44(7):1875–1887. https://doi.org/10.1016/j.foodres.2011.02.053

    Article  CAS  Google Scholar 

  88. Delgado-Nieblas C, Aguilar-Palazuelos E, Gallegos-Infante A, Rocha-Guzmán N, Zazueta-Morales J, Caro-Corrales J (2012) Characterization and optimization of extrusion cooking for the manufacture of third-generation snacks with winter squash (Cucurbita moschata D.) flour. Cereal Chem 89(1):65–72. https://doi.org/10.1094/CCHEM-02-11-0016

  89. Dar AH, Sharma HK, Kumar N (2014) Effect of extrusion temperature on the microstructure, textural and functional attributes of carrot pomace-based extrudates. J Food Process Preserv 38(1):212–222. https://doi.org/10.1111/j.1745-4549.2012.00767.x

    Article  CAS  Google Scholar 

  90. Rojas-Garbanzo C, Pérez AM, Bustos-Carmona J, Vaillant F (2011) Identification and quantification of carotenoids by HPLC-DAD during the process of peach palm (Bactris gasipaes H.B.K.) flour. Food Res Int 44(7):2377–2384. https://doi.org/10.1016/j.foodres.2011.02.045

  91. Obradović V, Babić J, Šubarić D, Jozinović A, Ačkar D, Klarić I (2015) Influence of dried Hokkaido pumpkin and ascorbic acid addition on chemical properties and colour of corn extrudates. Food Chem 183:136–143. https://doi.org/10.1016/j.foodchem.2015.03.045

    Article  CAS  PubMed  Google Scholar 

  92. Frankel EN (1991) Review. Recent advances in lipid oxidation. J Sci Food and Agri 54(4):495–511. https://doi.org/10.1002/jsfa.2740540402

  93. Guzman‐Tello R, Cheftel JC (1990) Colour loss during extrusion cooking of β‐carotene‐wheat flour mixes as an indicator of the intensity of thermal and oxidative processing. Int J Food Sci Technol 25(4):420-434

  94. Rodríguez JAR, Ascheri JLR, da Silva Lopes AJ, Vargas-Solórzano JW, Pacheco S, de Jesus MSC (2021) Physical characterization of maize grits expanded snacks and changes in the carotenoid profile. Plant Foods Hum Nutr 1–8. https://doi.org/10.1007/s1113-0020-00876-2

  95. Tovar-Jiménez X, Caro-Corrales J, Gómez-Aldapa CA, Zazueta-Morales J, Limón-Valenzuela V, Castro-Rosas J, Aguilar-Palazuelos E (2015) Third generation snacks manufactured from orange by-products: physicochemical and nutritional characterization. J Food Sci Technol 52(10):6607–6614. https://doi.org/10.1007/s13197-015-1726-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dehghan-Shoar Z, Hardacre AK, Brennan CS (2010) The physico-chemical characteristics of extruded snacks enriched with tomato lycopene. Food Chem 123(4):1117–1122. https://doi.org/10.1016/j.foodchem.2010.05.071

    Article  CAS  Google Scholar 

  97. Ying D, Cheng LJ, Chibracq G, Sanguansri L, Oiseth SK, Augustin MA (2015) The format of β-carotene delivery affects its stability during extrusion. LWT-Food Science and Technology 60(1):1–7. https://doi.org/10.1016/j.lwt.2014.09.034

    Article  CAS  Google Scholar 

  98. Ying DY, Cheng LJ, Chibracq G, Sanguansri L, Oiseth SK, Augustin MA (2015) The format of β-carotene delivery affects its stability during extrusion. LWT Food Sci Technol 60(1):1–7. https://doi.org/10.1016/j.lwt.2014.09.034

    Article  CAS  Google Scholar 

  99. Paznocht L, Burešová B, Kotíková Z, Martinek P (2021) Carotenoid content of extruded and puffed products made of colored-grain wheats. Food Chem 340:127951. https://doi.org/10.1016/j.foodchem.2020.127951

    Article  CAS  PubMed  Google Scholar 

  100. Cortés RNF, Guzmán IV, Martínez-Bustos F (2014) Effects of some extrusion variables on physicochemical characteristics of extruded corn starch-passion fruit pulp (Passiflora edulis) snacks. Plant Foods Hum Nutr 69(4):365–371. https://doi.org/10.1007/s11130-014-0443-8

    Article  CAS  PubMed  Google Scholar 

  101. Wyman CE (1975) i 15(8)

  102. Marty C, Berset C (1986) Degradation of trans-β-carotene during heating in sealed glass tubes and extrusion cooking. J Food Sci 51(3):698–702. https://doi.org/10.1111/j.1365-2621.1986.tb13915.x

    Article  CAS  Google Scholar 

  103. Kosińska-Cagnazzo A, Bocquel D, Marmillod I, Andlauer W (2017) Stability of goji bioactives during extrusion cooking process. Food Chem 230:250–256. https://doi.org/10.1016/j.foodchem.2017.03.035

    Article  CAS  PubMed  Google Scholar 

  104. Pensamiento-Niño CA, Gómez-Aldapa CA, Hernández-Santos B, Juárez-Barrientos JM, Herman-Lara E, Martínez-Sánchez CE, Torruco-Uco JG, Rodríguez-Miranda J (2018) Optimization and characterization of an extruded snack based on taro flour (Colocasia esculenta L.) enriched with mango pulp (Mangifera indica L.). J Food Sci Technol 55(10):4244–4255. https://doi.org/10.1007/s13197-018-3363-z

  105. Ambati RR, Moi PS, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications - a review. Mar Drugs 12(1):128–152. https://doi.org/10.3390/md12010128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ruiz-Armenta XA, de Zazueta-MoralesJ, Aguilar-Palazuelos E, Delgado-Nieblas C I, López-Diaz A, Camacho-Hernández I L, Gutiérrez-Dorado R, Martínez-Bustos F J (2018) Efecto de la extrusión sobre el contenido de carotenoides, propiedades físicas y sensoriales de alimentos botana adicionados con bagazo del fruto de naranjita: optimización del proceso. CYTA - J Food 16(1):172–180. https://doi.org/10.1080/19476337.2017.1368717

    Article  CAS  Google Scholar 

  107. Favaro-trindade CS, De Pinho SC (2008) Revisão: Microencapsulação de ingredientes alimentícios. BR J of Food Technol 11:103–112. https://doi.org/10.18406/2316-1817v1n32009223

  108. Tachaprutinun A, Udomsup T, Luadthong C, Wanichwecharungruang S (2009) Preventing the thermal degradation of astaxanthin throughnanoencapsulation. Int J Pharm 374(1-2):119-124

  109. Favaro-Trindade CS, Patel B, Silva MP, Comunian TA, Federici E, Jones OG, Campanella OH (2020) Microencapsulation as a tool toproducing an extruded functional food. LWT 128:109433

Download references

Funding

The present work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil), for doctoral fellowship granted to L.S. Pinho (#2016/24916-2 and #2019/11113-7). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O H Campanella.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinho, L.S., Rodrigues, C.E.C., Favaro-Trindade, C. et al. The Incorporation of Carotenoids on Ready to Eat Foods Studied Through Their Stability During Extrusion Processing. Food Eng Rev 13, 902–915 (2021). https://doi.org/10.1007/s12393-021-09285-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-021-09285-w

Keywords

Navigation