Skip to main content
Log in

Developments and Advances of High Intensity Pulsed Light and its Combination with Other Treatments for Microbial Inactivation in Food Products

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

High-intensity pulsed light (HIPL) technology is increasingly utilized to disinfect foods by inactivating microorganisms. Short-duration, high-intensity, broad-spectrum light bursts delay food spoilage and inactivate or destroy pathogenic microorganisms through photothermal, photochemical, and photophysical mechanisms. These effects are predominantly derived from the ultraviolet (UV) fraction of HIPL; however, the technique possesses certain limitations that have impeded widespread adoption by the food industry. HIPL primarily acts on the surface of foods and is currently only applicable to transparent fluids, unlike UV disinfection. In recent years, improvements in the design of HIPL treatments include kinetic systems that move particles around a light source and modalities that combine HIPL with other techniques. Studies have shown that HIPL could increase the effectiveness of ultrasound, edible coatings, and sanitizer washes in certain instances. The converse has also been demonstrated, with added treatments improving the efficacy of HIPL processes. The goal of combination technologies is to reduce the intensity of any one treatment to better preserve food quality. Research on combination methods for HIPL treatment is ongoing and is focused on equipment refinements that confer better treatments over a wider range of applications. This review provides a summary of the current design criteria and effects of HIPL as well as recent research on interactions of HIPL with other food disinfection technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from Rowan et al. [36])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(adapted from Fine and Gervais [92])

Fig. 7

(adapted from Chen et al. [44])

Fig. 8
Fig. 9

(adapted from Muñoz et al. [50])

Fig. 10

(adapted from Xu et al. [52])

Similar content being viewed by others

References

  1. Rowan NJ, Valdramidis VP, Gómez-López VM (2015) A review of quantitative methods to describe efficacy of pulsed light generated inactivation data that embraces the occurrence of viable but non culturable state microorganisms. Trends Food Sci Tech 44:79–92

    Article  CAS  Google Scholar 

  2. John D, Ramaswamy HS (2018) Pulsed light technology to enhance food safety and quality: a mini-review. Curr Opin Food Sci 23:70–79

    Article  Google Scholar 

  3. Bhavya ML, Umesh Hebbar H (2017) Pulsed light processing of foods for microbial safety. Food Quality and Safety 1:187–202

    Article  CAS  Google Scholar 

  4. Zhang ZH, Wang LH, Zeng XA, Han Z, Brennan CS (2019) Non-thermal technologies and its current and future application in the food industry: a review. Int J Food Sci Tech 54:1–13

    Article  CAS  Google Scholar 

  5. Ferrario M, Alzamora SM, Guerrero S (2015) Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound. Food Microbiol 46:635–642

    Article  PubMed  Google Scholar 

  6. Leistner L, Gorris LGM (1995) Food preservation by hurdle technology. Trends Food Sci Tech 6:41–46

    Article  CAS  Google Scholar 

  7. Heinrich V, Zunabovic M, Varzakas T, Bergmair J, Kneifel W (2016b) Pulsed light treatment of different food types with a special focus on meat: a critical review. Crit Rev Food Sci Nutr 56:591–613

    Article  CAS  PubMed  Google Scholar 

  8. Anderson JG, Rowan NJ, MacGregor SJ, Farish O (2000) Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 28:83–88

    Article  Google Scholar 

  9. Takeshita K (2003) Damage of yeast cells induced by pulsed light irradiation. Int J Food Microbiol 85:151–158

    Article  PubMed  Google Scholar 

  10. Wuytack EY, Phuong DT, Aertsen A, Reyns KM, Marquenie D, De Ketelaere B, Michielis CW (2003) Comparison of Sublethal Injury Induced in Salmonella enterica Serovar Typhimurium by Heat and by Different Nonthermal Treatments. J Food Prot 66:31–37

    Article  PubMed  Google Scholar 

  11. Aguirre JS, García de Fernando G, Hierro E, Hospital XF, Ordóñez JA, Fernández M (2015) Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment. Int J Food Microbiol 202:20–26

    Article  PubMed  Google Scholar 

  12. Uesugi AR, Hsu LC, Worobo RW, Moraru CI (2016) Gene expression analysis for Listeria monocytogenes following exposure to pulsed light and continuous ultraviolet light treatments. LWT - Food Sci Technol 68:579–588

    Article  CAS  Google Scholar 

  13. Elmnasser N, Guillou S, Leroi F, Orange N, Bakhrouf A, Federighi M (2007) Pulsed-light system as a novel food decontamination technology: a review. Can J Microbiol 53:813–821

    Article  CAS  PubMed  Google Scholar 

  14. Wekhof A, Trompeter FJ, Franken O (2001) Pulsed UV Disintegration (PUVD): a new sterilisation mechanism for packaging and broad medical-hospital applications. The first international conference on ultraviolet technologies Washington D.C

  15. Levy C, Aubert X, Lacour B, Carlin F (2012) Relevant factors affecting microbial surface decontamination by pulsed light. Int J Food Microbiol 152:168–174

    Article  PubMed  Google Scholar 

  16. Chaine A, Levy C, Lacour B, Riedel C, Carlin F (2012) Decontamination of sugar syrup by pulsed light. J Food Prot 75:913–917

    Article  CAS  PubMed  Google Scholar 

  17. Huang Y, Ye M, Cao X, Chen H (2017) Pulsed light inactivation of murine norovirus, Tulane virus, Escherichia coli O157:H7 and Salmonella in suspension and on berry surfaces. Food Microbiol 61:1–4

    Article  PubMed  Google Scholar 

  18. Kramer B, Wunderlich J, Muranyi P (2017) Impact of treatment parameters on pulsed light inactivation of microorganisms on a food simulant surface. Innov Food Sci Emerg Technol 42:83–93

    Article  CAS  Google Scholar 

  19. Ramos-Villarroel AY, Aron-Maftei N, Martín-Belloso O, Soliva-Fortuny R (2012) The role of pulsed light spectral distribution in the inactivation of Escherichia coli and Listeria innocua on fresh-cut mushrooms. Food Control 24:206–213

    Article  Google Scholar 

  20. Lasagabaster A, Martínez de Marañón I (2017) Comparative study on the inactivation and photoreactivation response of Listeria monocytogenes seafood isolates and Listeria innocua surrogate after pulsed light treatment. Food Bioprocess Tech 10:1931–1935

    Article  CAS  Google Scholar 

  21. Farrell HP, Garvey M, Cormican M, Laffey JG, Rowan NJ (2010) Investigation of critical inter-related factors affecting the efficacy of pulsed light for inactivating clinically relevant bacterial pathogens. J Appl Microbiol 108:1494–1508

    Article  CAS  PubMed  Google Scholar 

  22. Hierro E, Manzano S, Ordóñez JA, de la Hoz L, Fernández M (2009) Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by pulsed light technology. Int J Food Microbiol 135:125–130

    Article  CAS  PubMed  Google Scholar 

  23. Luo W, Chen A, Chen M, Dong W, Hou X (2014) Comparison of sterilization efficiency of pulsed light and continuous UV light using tunable frequency UV system. Innov Food Sci Emerg Technol 26:220–225

    Article  CAS  Google Scholar 

  24. Marquenie D, Michiels CW, Van Impe JF, Schrevens E, Nicola BN (2003) Pulsed white light in combinations with UVC and heat to reduce storage rot of strawberry. Postharvest Biol Tec 28:455–461

    Article  Google Scholar 

  25. Oms-Oliu G, Martín-Belloso O, Soliva-Fortuny R (2010) Pulsed light treatments for food preservation. a review. Food Bioproc Tech 3:13–23

    Article  Google Scholar 

  26. Uesugi AR, Woodling SE, Moraru CE (2007) Inactivation kinetics and factors of variability in the pulsed light treatment of Listeria innocua cells. J Food Prot 70:2518–2525

    Article  PubMed  Google Scholar 

  27. Gómez-López VM, Devlieghere F, Bonduelle V, Debevere J (2005) Factors affecting the inactivation of micro-organisms by intense light pulses. J Appl Microbiol 99:460–470

    Article  PubMed  Google Scholar 

  28. Prasad A, Du L, Zubair M, Subedi S, Ullah A, Roopesh MS (2020) Applications of light-emitting diodes (LEDs) in food processing and water treatment. Food Eng Rev 12(3):268–289

    Article  CAS  Google Scholar 

  29. Kebbi Y, Muhammad AI, Sant’Ana AS, do Prado-Silva L, Liu D, Ding T, (2020) Recent advances on the application of UV-LED technology for microbial inactivation: Progress and mechanism. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.12645

    Article  PubMed  Google Scholar 

  30. Sholtes K, Linden KG (2019) Pulsed and continuous light UV LED: microbial inactivation, electrical, and time efficiency. Water Res 165:114965

    Article  CAS  PubMed  Google Scholar 

  31. Song K, Taghipour F, Mohseni M (2018) Microorganisms inactivation by continuous and pulsed irradiation of ultraviolet light-emitting diodes (UV-LEDs). Chem Eng J 343:362–270

    Article  CAS  Google Scholar 

  32. Mandal R, Mohammadi X, Wiktor A, Singh A, Anubhav PS (2020) Applications of pulsed light decontamination technology in food processing: An Overview. Appl Sci 10(10):3606

    Article  CAS  Google Scholar 

  33. Rowan NJ (2019) Pulsed light as an emerging technology to cause disruption for food and adjacent industries–Quo Vadis? Trends Food Sci Tech 88:316–332

    Article  CAS  Google Scholar 

  34. Hiramoto T (1984) U.S. Patent No. 4,464,336. Washington, DC: U.S. Patent and Trademark Office

  35. MacGregor SJ, Rowan NJ, McIlvaney L, Anderson JG, Fouracre RA, Farish O (1998) Light inactivation of food-related pathogenic bacteria using a pulsed power source. Lett Appl Microbiol 27:67–70

    Article  CAS  PubMed  Google Scholar 

  36. Rowan NJ, MacGregor SJ, Anderson JG, Fouracre RA, McIlvaney L, Farish O (1999) Pulsed-light inactivation of food-related microorganisms. Appl Environ Microbiol 65:312–1315

    Article  Google Scholar 

  37. Hwang HJ, Seo JH, Jeong C, Cheigh CI, Chung MS (2019) Analysis of bacterial inactivation by intense pulsed light using a double-Weibull survival model. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2019.102185

    Article  Google Scholar 

  38. Cao X, Huang R, Chen H (2019) Evaluation of food safety and quality parameters for shelf life extension of pulsed light treated strawberries. J Food Sci 84:1494–1500

    Article  CAS  PubMed  Google Scholar 

  39. Luksiene Z, Gudelis V, Buchovec I, Raudeliuniene J (2007) Advanced high-power pulsed light device to decontaminate food from pathogens: effects on Salmonella typhimurium viability in vitro. J Appl Microbiol 103:1545–1552

    Article  CAS  PubMed  Google Scholar 

  40. Mahendran R, Ramanan KR, Barba FJ, Lorenzo JM, López-Fernández O, Munekata PE, Roohinejad S, SantAna A, Tiwari BK (2019) Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci Tech 88:67–79

    Article  CAS  Google Scholar 

  41. Collazo C, Charles F, Aguiló-Aguayo I, Marín-Sáez J, Lafarga T, Abadias M, Viñas I (2019) Decontamination of Listeria innocua from fresh-cut broccoli using UV-C applied in water or peroxyacetic acid, and dry-pulsed light. Innov Food Sci Emerg Technol 52:438–449

    Article  CAS  Google Scholar 

  42. Dunn JE, Clark RW, Asmus JF, Pearlman JS, Boyer K, Painchaud F, Hofmann GA (1989) U.S. Patent No. 4,871,559. Washington, DC: U.S. Patent and Trademark Office

  43. Chen D, Chen P, Cheng Y, Peng P, Liu J, Ma Y, Liu Y, Ruan R (2019) Deoxynivalenol decontamination in raw and germinating barley treated by plasma-activated water and intense pulsed light. Food Bioproc Tech 12:246–254

    Article  CAS  Google Scholar 

  44. Chen D, Wiertzema J, Peng P, Cheng Y, Liu J, Mao Q, Ma Y, Andreson E, Chen P, Baumler D, Chen C, Vickers Z, Feirtag J, Lee L, Ruan R (2018) Effects of intense pulsed light on Cronobacter sakazakii inoculated in non-fat dry milk. J Food Eng 238:178–187

    Article  CAS  Google Scholar 

  45. Miller BM, Sauer A, Moraru CI (2012) Inactivation of Escherichia coli in milk and concentrated milk using pulsed-light treatment. J Dairy Sci 95:5597–5603

    Article  CAS  PubMed  Google Scholar 

  46. Huang R, Chen H (2019) Sanitation of tomatoes based on a combined approach of washing process and pulsed light in conjunction with selected disinfectants. Food Res Int 116:778–785

    Article  CAS  PubMed  Google Scholar 

  47. Ferrario M, Alzamora SM, Guerrero S (2013) Inactivation kinetics of some microorganisms in apple, melon, orange and strawberry juices by high intensity light pulses. J Food Eng 118(3):302–311

    Article  Google Scholar 

  48. Hwang HJ, Cheigh CI, Chung MS (2015) Relationship between optical properties of beverages and microbial inactivation by intense pulsed light. Innov Food Sci Emerg Technol 31:91–96

    Article  Google Scholar 

  49. Sauer A, Moraru CI (2009) Inactivation of Escherichia coli ATCC 25922 and Escherichia coli O157: H7 in apple juice and apple cider, using pulsed light treatment. J Food Prot 72:937–944

    Article  PubMed  Google Scholar 

  50. Muñoz A, Caminiti IM, Palgan I, Pataro G, Noci F, Morgan DJ, Cronin DA, Whyte P, Ferrari G, Lyng JG (2012) Effects on Escherichia coli inactivation and quality attributes in apple juice treated by combinations of pulsed light and thermosonication. Food Res Int 45:299–305

    Article  CAS  Google Scholar 

  51. Pataro G, Muñoz A, Palgan I, Noci F, Ferrari G, Lyng JG (2011) Bacterial inactivation in fruit juices using a continuous flow pulsed light (PL) system. Food Res Int 44:1642–1648

    Article  CAS  Google Scholar 

  52. Xu F, Wang B, Hong C, Telebielaigen S, Nsor-Atindana J, Duan Y, Zhong F (2019) Optimization of spiral continuous flow-through pulse light sterilization for Escherichia coli in red grape juice by response surface methodology. Food Control 105:8–12

    Article  CAS  Google Scholar 

  53. Hilton ST, De Moraes JO, Moraru CI (2017) Effect of sublethal temperatures on pulsed light inactivation of bacteria. Innov Food Sci Emerg Technol 39:49–54

    Article  CAS  Google Scholar 

  54. Wekhof A (2000) Disinfection with flash lamps. PDAJ Pharma Sci Technol 54:264–276

    CAS  Google Scholar 

  55. Artíguez ML, de Marañón IM (2015a) Inactivation of Bacillus subtilis spores by combined pulsed light and thermal treatments. Int J Food Microbiol 214:31–37

    Article  PubMed  Google Scholar 

  56. Lasagabaster A, de Marañón IM (2014) Survival and growth of Listeria innocua treated by pulsed light technology: Impact of post-treatment temperature and illumination conditions. Food Microbiol 41:76–81

    Article  PubMed  Google Scholar 

  57. Artíguez ML, de Marañón IM (2015b) Improved process for decontamination of whey by a continuous flow-through pulsed light system. Food Control 47:599–605

    Article  CAS  Google Scholar 

  58. Abuagela MO, Iqdiam BM, Baker GL, MacIntosh AJ (2018) Temperature-controlled pulsed light treatment: impact on aflatoxin level and quality parameters of peanut oil. Food Bioproc Tech 11:1350–1358

    Article  CAS  Google Scholar 

  59. Wang B, Khir R, Pan Z, Wood D, Mahoney NE, El-Mashad H, Wu B, Ma H, Liu X (2016) Simultaneous decontamination and drying of rough rice using combined pulsed light and holding treatment. J Sci Food and Agric 96:2874–2881

    Article  CAS  Google Scholar 

  60. Sango D, Abela D, McElhatton A, Valdramidis VP (2014) Assisted ultrasound applications for the production of safe foods. J Appl Microbiol 116:1067–1083

    Article  CAS  PubMed  Google Scholar 

  61. Chemat F, Zill-e-Huma, Khan MK (2011) Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem 18:813–835

    Article  CAS  PubMed  Google Scholar 

  62. Nazari SH, Weiss J (2010) Evidence of antimicrobial activity of date fruits in combination with high intensity ultrasound. Afr J Microbiol Res 4:561–567

    Google Scholar 

  63. Gallo M, Ferrara L, Naviglio D (2018) Application of ultrasound in food science and technology: A Perspective. Foods 7:164

    Article  CAS  PubMed Central  Google Scholar 

  64. Ambadgatti S (2020) A review on recent trends of ultrasound assisted processing in food segment. J Microbiol Biotechnol Food Sci 10(1):1–4

    Article  CAS  Google Scholar 

  65. Caminiti IM, Noci F, Morgan DJ, Cronin DA, Lyng JG (2012) The effect of pulsed electric fields, ultraviolet light or high intensity light pulses in combination with manothermosonication on selected physico-chemical and sensory attributes of an orange and carrot juice blend. Food Bioprod Proc 90:442–448

    Article  Google Scholar 

  66. Muñoz A, Palgan I, Noci F, Morgan DJ, Cronin DA, Whyte P, Lyng JG (2011) Combinations of high intensity light pulses and thermosonication for the inactivation of Escherichia coli in orange juice. Food Microbiol 28:1200–1204

    Article  PubMed  Google Scholar 

  67. Ferrario M, Guerrero S (2016) Effect of a continuous flow-through pulsed light system combined with ultrasound on microbial survivability, color and sensory shelf life of apple juice. Innov Food Sci Emerg Technol 34:214–224

    Article  CAS  Google Scholar 

  68. Ferrario M, Guerrero S (2017) Impact of a combined processing technology involving ultrasound and pulsed light on structural and physiological changes of Saccharomyces cerevisiae KE 162 in apple juice. Food Microbiol 65:83–94

    Article  CAS  PubMed  Google Scholar 

  69. Huang R, Chen H (2018) Evaluation of inactivating Salmonella on iceberg lettuce shreds with washing process in combination with pulsed light, ultrasound and chlorine. Int J Food Microbiol 285:144–151

    Article  CAS  PubMed  Google Scholar 

  70. Kwaw E, Ma Y, Tchabo W, Apaliya MT, Sackey AS, Wu M, Xiao L (2018) Impact of ultrasonication and pulsed light treatments on phenolics concentration and antioxidant activities of lactic-acid-fermented mulberry juice. LWT 92:61–66

    Article  CAS  Google Scholar 

  71. Ruhlman KT, Jin ZT, Zhang QH (2019) Physical properties of liquid foods for pulsed electric field treatment. Pulsed Electric Fields in Food Processing. https://doi.org/10.1201/9780429133459-3

    Article  Google Scholar 

  72. Pal M (2017) Pulsed electric field processing: an emerging technology for food preservation. J Exp Food Chem. https://doi.org/10.4172/2472-0542.1000126

    Article  Google Scholar 

  73. Bhat ZF, Kumar Sing P, Kumar S, Kumar P (2012) Pulsed light and pulsed electric field-emerging non thermal decontamination of meat. Am J Food Technol 7:506–516

    Article  Google Scholar 

  74. Caminiti IM, Noci F, Muñoz A, Whyte P, Morgan DJ, Cronin DA, Lyng JG (2011) Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chem 124:1387–1392

    Article  CAS  Google Scholar 

  75. Mittal RP, Rana A, Jaitak V (2019) Essential oils: an impending substitute of synthetic antimicrobial agents to overcome antimicrobial resistance. Curr Drug Targets 20:605–624

    Article  CAS  PubMed  Google Scholar 

  76. Rao J, Chen B, McClements DJ (2019) Improving the efficacy of essential oils as antimicrobials in foods: mechanisms of action. Annu Rev Food Sci and Technol 10:365–387

    Article  CAS  Google Scholar 

  77. Calo JR, Crandall PG, O’Bryan CA, Ricke SC (2015) Essential oils as antimicrobials in food systems – A review. Food Control 54:111–119

    Article  CAS  Google Scholar 

  78. Shiekh RA, Malik MA, Al-Thabaiti SA, Shiekh MA (2013) Chitosan as a novel edible coating for fresh fruits. Food Sci Technol Res 19:139–155

    Article  CAS  Google Scholar 

  79. Donsì F, Marchese E, Maresca P, Pataro G, Vu KD, Salmieri S, Lacroix M, Ferrari G (2015) Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biol Technol 106:21–32

    Article  CAS  Google Scholar 

  80. Taştan Ö, Pataro G, Donsì F, Ferrari G, Baysal T (2017) Decontamination of fresh-cut cucumber slices by a combination of a modified chitosan coating containing carvacrol nanoemulsions and pulsed light. Int J Food microbiol 260:75–80

    Article  PubMed  CAS  Google Scholar 

  81. Koh PC, Noranizan MA, Hanani ZAN, Karim R, Rosli SZ (2017) Application of edible coatings and repetitive pulsed light for shelf life extension of fresh-cut cantaloupe (Cucumis melo L. reticulatus cv. Glamour). Postharvest Biol Tec 129:64–78

    Article  CAS  Google Scholar 

  82. Salinas-Roca B, Soliva-Fortuny R, Welti-Chanes J, Martín-Belloso O (2016) Combined effect of pulsed light, edible coating and malic acid dipping to improve fresh-cut mango safety and quality. Food Control 66:190–197

    Article  CAS  Google Scholar 

  83. Ramos-Villarroel AY, Martín-Belloso O, Soliva-Fortuny R (2015) Combined effects of malic acid dip and pulsed light treatments on the inactivation of Listeria innocua and Escherichia coli on fresh-cut produce. Food Control 52:112–118

    Article  CAS  Google Scholar 

  84. Moreira MR, Tomadoni B, Martín-Belloso O, Soliva-Fortuny R (2015) Preservation of fresh-cut apple quality attributes by pulsed light in combination with gellan gum-based prebiotic edible coatings. LWT-Food Sci Technol 64:1130–1137

    Article  CAS  Google Scholar 

  85. Gutiérrez TJ (2017) Effects of exposure to pulsed light on molecular aspects of edible films made from cassava and taro starch. Innov Food Sci Emerg Technol 41:387–396

    Article  CAS  Google Scholar 

  86. Leng J, Mukhopadhyay S, Sokorai K, Ukuku DO, Fan X, Olanya M, Juneja V (2020) Inactivation of Salmonella in cherry tomato stem scars and quality preservation by pulsed light treatment and antimicrobial wash. Food Control 110:107005

    Article  CAS  Google Scholar 

  87. Williams LL, Yang WW, English T, English N, Johnson JU, Rababah T, Khatiwada J (2012) Disinfection of Salmonella Spp. on Tomato surface by pulsed ultraviolet light and selected sanitizers. Int J Food Eng. https://doi.org/10.1515/1556-3758.2063

  88. Ersoy ZG, Dnic O, Cinar B, Gedik ST, Dimoglo A (2019) Comparative evaluation of disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on Enterococcus faecalis. LWT 102:205–213

    Article  CAS  Google Scholar 

  89. Fukuzaki S (2006) Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci 11:147–157

    Article  CAS  PubMed  Google Scholar 

  90. Yang WW, Chung SY, Ajayi O, Krishnamurthy K, Konan K, Goodrich-Schneider R (2010) Use of pulsed ultraviolet light to reduce the allergenic potency of soybean extracts. Int J Food Eng. https://doi.org/10.2202/1556-3758.1876

    Article  Google Scholar 

  91. Steribeam (2020) Sterilization systems.Bench-top R&D pulsed light (UV) systems. Accessed 27 Jan 2020

  92. Fine F, Gervais P (2004) Efficiency of pulsed UV light for microbial decontamination of food powders. J Food Prot 67:787–792

    Article  CAS  PubMed  Google Scholar 

  93. Agüero MV, Jagus RJ, Martín-Belloso O, Soliva-Fortuny R (2016) Surface decontamination of spinach by intense pulsed light treatments: Impact on quality attributes. Postharvest Biol Technol 121:118–125

    Article  CAS  Google Scholar 

  94. Gómez PL, Salvatori DM, García-Loredo A, Alzamora SM (2012b) Pulsed light treatment of cut apple: dose effect on color, structure, and microbiological stability. Food Bioproc Tech 5:2311–2322

    Article  Google Scholar 

  95. Hierro E, Ganan M, Barroso E, Fernnández M (2012) Pulsed light treatment for the inactivation of selected pathogens and the shelf-life extension of beef and tuna carpaccio. Int J Food Microbiol 158:42–48

    Article  PubMed  Google Scholar 

  96. Fernández M, Hospital MM, Arias K, Hierro E (2016) Application of pulsed light to sliced cheese: Effect on Listeria inactivation, sensory quality, and volatile profile. Food Bioproc Tech 9:1335–1344

    Article  CAS  Google Scholar 

  97. Can FO, Demirci A, Puri VM, Gourma H (2014) Decontamination of hard cheeses by pulsed UV light. J Food Prot 77:1723–1731

    Article  PubMed  Google Scholar 

  98. Cheigh C-I, Hwang H-J, Chung M-S (2013) Intense pulsed light (IPL) and UV-C treatments for inactivating Listeria monocytogenes on solid medium and seafoods. Food Res Int 51:745–752

    Article  CAS  Google Scholar 

  99. Ganan M, Hierro E, Hospital XF, Barroso E, Fernández M (2013) Use of pulsed light to increase the safety of ready-to-eat cured meat products. Food Control 32:512–517

    Article  Google Scholar 

  100. Hierro E, Barroso E, de la Hoz L, Ordóñez JA, Manzano S, Fernández M (2011) Efficacy of pulsed light for shelf-life extension and inactivation of Listeria monocytogenes on ready-to-eat cooked meat products. Innov Food Sci Emerg Technol 12:275–281

    Article  Google Scholar 

  101. Aguiló-Aguayo I, Charles F, Renard CM, Page D, Carlin F (2013) Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biol Technol 86:29–36

    Article  CAS  Google Scholar 

  102. Jun S, Irudayaraj J, Demirci A, Geiser D (2003) Pulsed UV-light treatment of corn meal for inactivation of Aspergillus niger spores. Int J Food Sci Technol 38:883–888

    Article  CAS  Google Scholar 

  103. Hwang H-J, Cheigh C-I, Chung M-S (2017) Construction of a pilot-scale continuous-flow intense pulsed light system and its efficacy in sterilizing sesame seeds. Innov Food Sci Emerg Technol 39:1–6

    Article  Google Scholar 

  104. Hwang H-J, Cheigh C-I, Chung M-S (2018) Comparison of bactericidal effects of two types of pilot-scale intense pulsed-light devices on cassia seeds and glutinous millet. Innov Food Sci Emerg Technol 49:170–175

    Article  CAS  Google Scholar 

  105. Duarte-Molina F, Gómez PL, Agueda Castro M, Alzamora SM (2016) Storage quality of strawberry fruit treated by pulsed light: fungal decay water loss and mechanical properties. Innov Food Sci Emerg Technol 34:267–274

    Article  CAS  Google Scholar 

  106. Aron-Maftei N, Ramos-Villarroel AY, Nicolau AI, Martín-Belloso O, Soliva-Fortuny R (2013) Pulsed light inactivation of naturally occurring moulds on wheat grain. J Sci Food Agric 94:721–726

    Article  PubMed  CAS  Google Scholar 

  107. Valdivia-Nájar CG, Martín-Belloso O, Giner-Seguí J, Soliva-Fortuny R (2017) Modeling the inactivation of Listeria innocua and Escherichia coli in fresh-cut tomato treated with pulsed light. Food Bioproc Tech 10(2):266–274

    Article  CAS  Google Scholar 

  108. Proulx J, Hsu LC, Miller BM, Sullivan G, Paradis K, Moraru CI (2015) Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface. J Dairy Sci 98(9):5890–5898

    Article  CAS  PubMed  Google Scholar 

  109. Macias-Rodriguez B, Yang W, Schneider K, Rock C (2014) Pulsed UV light as a postprocessing intervention for decontamination of hard-cooked peeled eggs. Int J Food Sci Tech 49:2472–2480

    Article  CAS  Google Scholar 

  110. Manzocco L, Maifreni M, Anese M, Munari M, Bartolomeoli I, Zanardi S, Suman M, Nicoli MC (2014) Effect of pulsed light on safety and quality of fresh egg pasta. Food Bioproc Tech 7(7):1973–1980

    Article  CAS  Google Scholar 

  111. Sharma RR, Demirci A (2003) Inactivation of Escherichia coli O157: H7 on inoculated alfalfa seeds with pulsed ultraviolet light and response surface modeling. J Food Sci 68(4):1448–1453

    Article  CAS  Google Scholar 

  112. Ramos-Villarroel AY, Martín-Belloso O, Soliva-Fortuny R (2011) Bacterial inactivation and quality changes in fresh-cut avocado treated with intense light pulses. Eur Food Res Technol 233(3):395–402

    Article  CAS  Google Scholar 

  113. Ferrario M, Alzamora SM, Guerrero S (2015) Study of pulsed light inactivation and growth dynamics during storage of ATCC 35218, ATCC 33090, Enteritidis MA44 and KE162 and native flora in apple, orange and strawberry juices. Int J Food Sci Technol 50(11):2498–2507

    Article  CAS  Google Scholar 

  114. Ferrario M, Guerrero S (2016) Effect of a continuous flow-through pulsed light system combined with ultrasound on microbial survivability, color and sensory shelf life of apple juice. Innov Food Sci Emerg Technol 34:214–224

    Article  CAS  Google Scholar 

Download references

Funding

PhD studies of González-Albarrán is financially supported by the Universidad de las Américas Puebla (UDLAP) and the National Council for Science and Technology (CONACyT) of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. López-Malo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco-Vega, A., Reyes-Jurado, F., González-Albarrán, D. et al. Developments and Advances of High Intensity Pulsed Light and its Combination with Other Treatments for Microbial Inactivation in Food Products. Food Eng Rev 13, 741–768 (2021). https://doi.org/10.1007/s12393-021-09280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-021-09280-1

Keywords

Navigation