Skip to main content

Advertisement

Log in

Effect of High Hydrostatic Pressure on the Content of Phytochemical Compounds and Antioxidant Activity of Prickly Pears (Opuntia ficus-indica) Beverages

  • Original Paper
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Prickly pear beverages prepared with 10 % peel and 90 % pulp (Cristal and Rojo San Martín varieties) either with (A) or without (N) the incorporation of acids and antimicrobials (0.3 g sodium benzoate, 0.15 g sodium sorbate, 1.4 g fumaric acid, 0.4 g tartaric acid and 0.3 g sodium citrate per liter of beverage) were treated with high hydrostatic pressure (HHP, 400 or 550 MPa, room temperature, 0–16 min), or heat sterilization (131 °C/2 s). The effect of these treatments on the content of vitamin C, total phenolic (TP), flavonoids and betalains, as well as the antioxidant activity (AOX) was evaluated. Prickly pear beverages prepared from Cristal (A) and Rojo San Martin (A and N) varieties processed at 550 MPa/t ≥ 2 min showed significant increase (p < 0.05) in TP (16–35 %) and AOX (8–17 %), no significant changes in kaempferol and isorhamnetin contents, and 3–15 % losses of vitamin C. Beverages formulated from the Rojo San Martin variety (A) treated at 550 MPa/t ≥ 2 min showed significant increase in betaxanthins (6–8 %) and betacyanin (4–7 %). On the other hand, heat sterilization caused significant losses (p < 0.05) of vitamin C (46–76 %), TP (27–52 %), flavonoids (0–52 %), betalains (7–45 %) and AOX (16–45 %). These results show that HHP treatments retains, and can even increase, the content of most phytochemical compounds of prickly pear beverages when compared to untreated samples, thus yielding products with higher nutraceutical quality than fresh or heat treated beverages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. SIAP-SAGARPA (2010) Anuario estadístico de la producción agrícola. México http://www.siap.gob.mx/index.php?option=com_wrapper&view=wrapper&Itemid=350). Accessed 1 Jan 2014

  2. Stintzing FC, Herbach KM, Mosshammer MR, Carle R, Yi W, Sellappan S, Akoh CC, Bunch R, Felker P (2005) Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J Agric Food Chem 53:442–451

    Article  CAS  Google Scholar 

  3. Piga A (2004) Cactus pear: a fruit nutraceutical and functional importance. J Prof Assoc Cactus Dev 6:9–22

    Google Scholar 

  4. Stintzing FC, Schieber A, Carle R (2001) Phytochemical and nutritional significance of cactus pear. Eur Food Res Techol 212:396–407

    Article  CAS  Google Scholar 

  5. Galati EM, Mondello MR, Giuffrida D, Dugo G, Miceli N, Pergolizzi S, Taviano MF (2003) Chemical characterization and biological effects of sicilian Opuntia ficus indica (L.) Mill. fruit juice: antioxidant and antiulcerogenic activity. J Agric Food Chem 51:4903–4908

    Article  CAS  Google Scholar 

  6. Jiménez-Aguilar DM, Mújica-Paz H, Welti-Chanes J (2014) Phytochemical characterization of prickly pear (Opuntia spp.) and of its nutritional and functional properties: a review. Curr Nutr Food Sci 10:57–69

    Article  Google Scholar 

  7. Jiménez-Aguilar DM, López-Martínez JM, Hernández-Brenes C, Gutiérrez-Uribe J, Welti-Chanes J (2015) Dietary fibre, phytochemicals and antioxidant activity of Mexican commercial varieties of cactus pear. J Food Comp Anal (in press, Accepted Manuscript)

  8. Díaz-Medina EM, Rodríguez-Rodríguez EM, Díaz-Romero C (2007) Chemical characterization of Opuntia dillenii and Opuntia ficus indica fruits. Food Chem 103:38–45

    Article  Google Scholar 

  9. Fernández-López J, Almela L, Obón J, Castellar R (2010) Determination of antioxidant constituents in cactus pear fruits. Plant Foods Hum Nutr 65:253–259

    Article  Google Scholar 

  10. Dhingra D, Michael M, Rajput H, Patil R (2011) Dietary fibre in foods: a review. J Food Sci Technol 49:255–266

    Article  Google Scholar 

  11. Azeredo H (2009) Betalains: properties, sources, applications, and stability: a review. Int J Food Sci Technol 44:2365–2376

    Article  CAS  Google Scholar 

  12. Chavez-Santoscoy RA, Gutierrez-Uribe JA, Serna-Saldívar SO (2009) Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Foods Hum Nutr 64:146–152

    Article  CAS  Google Scholar 

  13. Kuti JO (2004) Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem 85:527–533

    Article  CAS  Google Scholar 

  14. Escobedo-Avellaneda Z, Gutiérrez-Uribe J, Valdez-Fragoso A, Torres JA, Welti-Chanes J (2014) Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. J Funct Foods 6:470–481

    Article  CAS  Google Scholar 

  15. Serment-Moreno V, Escobedo-Avellaneda Z, Welti-Chanes J (2011) High hydrostatic pressure (HHP) microbial kinetic in orange comminuted, in 11th international congress on engineering and food. Greece, Athens

    Google Scholar 

  16. Barba FJ, Esteve MJ, Frigola A (2010) Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage. J Agric Food Chem 58:10070–10075

    Article  CAS  Google Scholar 

  17. Patras A, Brunton NP, Da Pieve S, Butler F (2009) Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov Food Sci Emerg Technol 10:308–313

    Article  CAS  Google Scholar 

  18. Patras A, Brunton N, Da Pieve S, Butler F, Downey G (2009) Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innov Food Sci Emerg Technol 10:16–22

    Article  CAS  Google Scholar 

  19. Sánchez-Moreno C, Plaza L, Elez-Martinez P, De Ancos B, Martin-Belloso O, Cano MP (2005) Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. J Agric Food Chem 53:4403–4409

    Article  Google Scholar 

  20. Bermúdez-Aguirre D, Barbosa-Cánovas GV (2011) An update on high hydrostatic pressure, from the laboratory to industrial applications. Food Eng Rev 3(1):44–61

    Article  Google Scholar 

  21. Mújica-Paz H, Valdéz-Fragoso A, Samson C, Welti-Chanes J, Torres JA (2011) High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol 4:969–985

    Article  Google Scholar 

  22. Rastogi NK, Raghavarao KSMS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47:69–112

    Article  CAS  Google Scholar 

  23. Fernández García A, Butz P, Bognàr A, Tauscher B (2001) Antioxidative capacity, nutrient content and sensory quality of orange juice and an orange–lemon–carrot juice product after high pressure treatment and storage in different packaging. Eur Food Res Technol 213:290–296

    Article  Google Scholar 

  24. McInerney JK, Seccafien CA, Stewart CM, Bird AR (2007) Effects of high pressure processing on antioxidant activity, and total carotenoid content and availability, in vegetables. Innov Food Sci Emerg Technol 8:543–548

    Article  CAS  Google Scholar 

  25. Ferrari G, Maresca P, Ciccarone R (2010) The application of high hydrostatic pressure for the stabilization of functional foods: pomegranate juice. J Food Eng 100:245–253

    Article  CAS  Google Scholar 

  26. García-García R, Escobedo-Avellaneda Z, Tejada-Ortigoza V, Martín-Belloso O, Valdez-Fragoso A, Welti-Chanes J (2014) Hurdle technology applied on prickly pear beverages to inhibit Saccharomyces cerevisiae and Escherichia coli. Lett appl micro. (Accepted manuscript)

  27. Jiménez-Aguilar DM (2012) Evaluación fitoquímica y actividad antioxidante de variedades comerciales de tuna (Opuntia ficus-indica), para la elaboración y estabilización de bebidas funcionales empleando altas presiones hidrostáticas (Doctoral dissertation). Escuela de Biotecnología y AlimentosTecnológico de Monterrey. Monterrey NL, Mexico

  28. AOAC (1995) Official methods of analysis of official analytical chemists. Arlington Virginia, USA

    Google Scholar 

  29. Gillespie KM, Ainsworth EA (2007) Measurement of reduced, oxidized and total ascorbate content in plants. Nat Protocols 2:871–874

    Article  CAS  Google Scholar 

  30. Cassano A, Conidi C, Timpone R, D’Avella M, Drioli E (2007) A membrane-based process for the clarification and the concentration of the cactus pear juice. J Food Eng 80:914–921

    Article  CAS  Google Scholar 

  31. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL (2002) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437–4444

    Article  CAS  Google Scholar 

  32. Yen GC, Lin HT (1996) Comparison of high pressure treatment and thermal pasteurization effects on the quality and shelf life of guava puree. Int J Food Sci Technol 31:205–213

    Article  CAS  Google Scholar 

  33. Bull MK, Zerdin K, Howe E, Goicoechea D, Paramanandhan P, Stockman R, Sellahewa J, Szabo EA, Johnson RL, Stewart CM (2004) The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innov Food Sci Emerg Technol 5:135–149

    Article  CAS  Google Scholar 

  34. Ogawa H, Fukuhisa K, Fukumoto H (1992) In: Balny C, Hayashi K, Heremans K, Masson P Effect of hydrostatic pressure on sterilization and preservation of citrus juice, John Libbey Eurotext, London

  35. Eisenmenger MJ, Reyes de Corcuera JI (2009) High pressure enhancement of enzymes: a review. Enzym Microb Technol 45:331–347

    Article  CAS  Google Scholar 

  36. Munyaka AW, Oey I, Van Loey A, Hendrickx M (2010) Application of thermal inactivation of enzymes during vitamin C analysis to study the influence of acidification, crushing and blanching on vitamin C stability in broccoli (Brassica oleracea L var. italica). Food Chem 120:591–598

    Article  CAS  Google Scholar 

  37. Ishikawa T, Takeda T, Shigeoka S (1996) Purification and characterization of cytosolic ascorbate peroxidase from komatsuna (Brassica rapa). Plant Sci 120:11–18

    Article  CAS  Google Scholar 

  38. Del Pozo-Insfran D, Del Follo-Martinez A, Talcott ST, Hernández-Brenes C (2007) Stability of copigmented anthocyanins and ascorbic acid in muscadine grape juice processed by high hydrostatic pressure. J Food Sci 72:S247–S253

    Article  Google Scholar 

  39. Xi J, Shen D, Zhao S, Lu B, Li Y, Zhang R (2009) Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. Int J Pharm 382:139–143

    Article  CAS  Google Scholar 

  40. Sánchez-Moreno C, Plaza L, de Ancos B, Cano MP (2006) Impact of high-pressure and traditional thermal processing of tomato purée on carotenoids, vitamin C and antioxidant activity. J Sci Food Agric 86:171–179

    Article  Google Scholar 

  41. Barba F, Cortés C, Esteve M, Frígola A (2012) Study of antioxidant capacity and quality parameters in an orange juice–milk beverage after high-pressure processing treatment. Food Bioprocess Technol 5:2222–2232

    Article  CAS  Google Scholar 

  42. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochem 62:247–269

    Article  CAS  Google Scholar 

  43. Suthanthangjai W, Kajda P, Zabetakis I (2005) The effect of high hydrostatic pressure on the anthocyanins of raspberry (Rubus idaeus). Food Chem 90:193–197

    Article  CAS  Google Scholar 

  44. Kouniaki S, Kajda P, Zabetakis I (2004) The effect of high hydrostatic pressure on anthocyanins and ascorbic acid in blackcurrants (Ribes nigrum). Flavour Frag J 19:281–286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support given by the Tecnológico de Monterrey (Research Chair Funds CAT-200 and Nutrigenómica), CONACYT-SEP (Research Project 101700 and Scholarship and Doctoral Scholarship Program), and Comité Nacional Sistema Producto Nopal y Tuna, and Fundación PRODUCE-Puebla. The support from Formula Grants No. 2011-31200-06041 and 2012-31200-06041 from the USDA National Institute of Food and Agriculture is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Welti-Chanes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Aguilar, D.M., Escobedo-Avellaneda, Z., Martín-Belloso, O. et al. Effect of High Hydrostatic Pressure on the Content of Phytochemical Compounds and Antioxidant Activity of Prickly Pears (Opuntia ficus-indica) Beverages. Food Eng Rev 7, 198–208 (2015). https://doi.org/10.1007/s12393-015-9111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-015-9111-5

Keywords

Navigation