Skip to main content
Log in

New Approaches for the Use of Non-conventional Cell Disruption Technologies to Extract Potential Food Additives and Nutraceuticals from Microalgae

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

In recent decades, microalgae species have focused the attention of several research groups and food industry as they are a great source of nutritionally valuable compounds. The use of environmentally friendly technologies has led to researchers and food industry to develop new alternative processes that can extract nutritionally valuable compounds from different sources, including microalgae. This note describes the potential use of some non-conventional methods including sub- and supercritical fluid extraction, pulsed electric fields, high-voltage electric discharges, high-pressure homogenization, ultrasound- and microwave-assisted extraction, which involve cell disruption to recover nutritionally valuable compounds from microalgae and can help to comply with criteria of green chemistry concepts and sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Posten C, Rosello-Sastre R (2011) Ullmann´s Encyclopedia of Industrial Chemistry

  2. Dufosse L, Galaup P, Yaron A et al (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406

    CAS  Google Scholar 

  3. Abd El-Baky HH, El Baz FK, El-Baroty GS (2009) Production of phenolic compounds from Spirulina maxima microalgae and its protective effects in vitro toward hepatotoxicity model. Afr J Pharm Pharmacol 3:133–139

    CAS  Google Scholar 

  4. Bishop WM, Zubeck HM (2012) Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2:147–152

    Google Scholar 

  5. Barba FJ, Esteve MJ, Frígola A (2014) Bioactive components from leaf vegetable products. Stud Nat Prod Chem 41:321–346

    CAS  Google Scholar 

  6. Ajikumar PK, Tyo K, Carlsen S et al (2008) Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm 5:167–190

    CAS  Google Scholar 

  7. Becker EW (2004) Handbook of microalgae culture: biotechnology and applied phycology. In: Richmond A (ed) Microalgae for aquaculture: the nutritional value of microalgae for aquaculture, chapter 21. Blackwell Science, Oxford

  8. Kay RA (1991) Microalgae as food and supplement. Crit Rev Food Sci Nutr 30:555–573

    CAS  Google Scholar 

  9. Goiris K, Muylaert K, Fraeye I et al (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486

    CAS  Google Scholar 

  10. Radwan SS (1991) Sources of C20-polyunsaturated fatty acids for biotechnological use. Appl Microbiol Biotechnol 35:421–430

    CAS  Google Scholar 

  11. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  Google Scholar 

  12. Atalah E, Cruz CMH, Izquierdo MS et al (2007) Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture 270:178–185

    CAS  Google Scholar 

  13. Kassis NM, Beamer SK, Matak KE et al (2010) Nutritional composition of novel nutraceutical egg products developed with omega-3-rich oils. LWT Food Sci Technol 43:1204–1212

    CAS  Google Scholar 

  14. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    CAS  Google Scholar 

  15. Barnabe G (1994) Aquaculture: biology and ecology of cultured species. Taylor & Francis, London

    Google Scholar 

  16. Hibbeln JR, Nieminen LRG, Blasbalg TL et al (2006) Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr 83:1483S–1493S

    CAS  Google Scholar 

  17. Mcclements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49:577–606

    CAS  Google Scholar 

  18. Barba FJ, Esteve MJ, Frigola A (2012) Impact of high-pressure processing on vitamin e (α-, γ-, and δ-Tocopherol), vitamin D (cholecalciferol and ergocalciferol), and fatty acid profiles in liquid foods. J Agric Food Chem 60:3763–3768

    CAS  Google Scholar 

  19. Scott SA, Davey MP, Dennis JS et al (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    CAS  Google Scholar 

  20. Jeffrey SW, Mantoura RFC, Wright SW (eds) (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Publishing, Paris, p 661 (Monographs on Oceanographic Methodology no. 10)

  21. Lee J-Y, Yoo C, Jun S-Y et al (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77

    CAS  Google Scholar 

  22. Tran H-L, Hong S-J, Lee C-G (2009) Evaluation of extraction methods for recovery of fatty acids from Botryococcus braunii LB 572 and Synechocystis sp. PCC 6803. Biotechnol Bioprocess Eng 14:187–192

    CAS  Google Scholar 

  23. Ranjan A, Patil C, Moholkar VS (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49:2979–2985

    CAS  Google Scholar 

  24. Hosikian A, Lim S, Halim R, Danquah MK (2010) Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng Article ID 391632

  25. Wiltshire KH, Boersma M, Möller A, Buhtz H (2000) Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquat Ecol 34:119–126

    CAS  Google Scholar 

  26. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    CAS  Google Scholar 

  27. Manzan ACCM, Toniolo FS, Bredow E, Povh NP (2003) Extraction of essential oil and pigments from Curcuma longa [L.] by steam distillation and extraction with volatile solvents. J Agric Food Chem 51:6802–6807

    CAS  Google Scholar 

  28. Lebovka NI, Shynkaryk MV, El-Belghiti K et al (2007) Plasmolysis of sugarbeet: pulsed electric fields and thermal treatment. J Food Eng 80:639–644

    Google Scholar 

  29. Vorobiev E, Lebovka N (2010) Enhanced extraction from solid foods and biosuspensions by pulsed electrical energy. Food Eng Rev 2:95–108

    CAS  Google Scholar 

  30. Lebovka N, Vorobiev E, Chemat F (2011) Series: contemporary food engineering. CRC Press, Taylor & Francis LLC, Boca Raton

  31. Ade-Omowaye BIO, Rastogi NK, Angersbach A, Knorr D (2003) Combined effects of pulsed electric field pre-treatment and partial osmotic dehydration on air drying behaviour of red bell pepper. J Food Eng 60:89–98

    Google Scholar 

  32. Fincan M, DeVito F, Dejmek P (2004) Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment. J Food Eng 64:381–388

    Google Scholar 

  33. Soliva-Fortuny R, Balasa A, Knorr D, Martín-Belloso O (2009) Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends Food Sci Technol 20:544–556

    CAS  Google Scholar 

  34. Bluhm H, Sack M (2008) Electrotechnologies for extraction from food plants and biomaterials. Food Engineering Series. Springer, Berlin, pp 237–269

    Google Scholar 

  35. Boussetta N, Lesaint O, Vorobiev E (2013) A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innov Food Sci Emerg Technol 19:124–132

    CAS  Google Scholar 

  36. Boussetta N, Vorobiev E (2014) Extraction of valuable biocompounds assisted by high voltage electrical discharges: a review. Comptes Rendus Chim 17:197–203

    CAS  Google Scholar 

  37. Luengo E, Alvarez I, Raso J (2013) Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov Food Sci Emerg Technol 17:79–84

    CAS  Google Scholar 

  38. Shynkaryk MV, Lebovka NI, Lanoisellé J-L et al (2009) Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae). J Food Eng 92:189–195

    Google Scholar 

  39. Liu D, Lebovka NI, Vorobiev E (2013) Impact of electric pulse treatment on selective extraction of intracellular compounds from Saccharomyces cerevisiae yeasts. Food Bioprocess Technol 6:576–584

    CAS  Google Scholar 

  40. Grimi N, Dubois A, Marchal L et al (2014) Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour Technol 153:254–259

    CAS  Google Scholar 

  41. Manas P, Vercet A (2006) Pulsed electric field technology for the food industry. In: Raso J, Heinz H (eds) Fundamentals and applications. Springer, Berlin, pp 131–153

    Google Scholar 

  42. Mastwijk H (2006) Pulsed electric field technology for the food industry. In: Raso J, Heinz H (eds) Fundamentals and applications. Springer, Berlin, pp 223–239

    Google Scholar 

  43. Toepfl S, Mathys A, Heinz V, Knorr D (2006) Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 22:405–423

    CAS  Google Scholar 

  44. Vorobiev E, Lebovka NI (2006) Pulsed electric field technology for the food industry. In: Raso J, Heinz H (eds) Fundamentals and applications. Springer, Berlin, pp 153–194

    Google Scholar 

  45. Toepfl S, Heinz V, Knorr D (2007) High intensity pulsed electric fields applied for food preservation. Chem Eng Process Process Intensif 46:537–546

    CAS  Google Scholar 

  46. Barba FJ, Jäger H, Meneses N et al (2012) Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innov Food Sci Emerg Technol 14:18–24

    CAS  Google Scholar 

  47. Zulueta A, Barba FJ, Esteve MJ, Frígola A (2013) Changes in quality and nutritional parameters during refrigerated storage of an orange juice-milk beverage treated by equivalent thermal and non-thermal processes for mild pasteurization. Food Bioprocess Technol 6:2018–2030

    CAS  Google Scholar 

  48. Goettel M, Eing C, Gusbeth C et al (2013) Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res 2:401–408

    Google Scholar 

  49. Kempkes MA, Roth I, Gaudreau MPJ (2012) A pulsed electric field (PEF) method for continuous enhanced extraction of oil and lipids from small aquatic plants. EP2496703A1

  50. Eing C, Goettel M, Straessner R et al (2013) Pulsed electric field treatment of microalgae—benefits for microalgae biomass processing. IEEE Trans Plasma Sci 41:2901–2907

    CAS  Google Scholar 

  51. Foltz G (2012) Algae lysis with pulsed electric fields. California Polytechnic State University, San Luis Obispo

  52. Zbinden MDA, Sturm BSM, Nord RD et al (2013) Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol Bioeng 110:1605–1615

    Google Scholar 

  53. Zulueta A, Esteve MJ, Frasquet I, Frigola A (2007) Fatty acid profile changes during orange juice-milk beverage processing by high-pulsed electric field. Eur J Lipid Sci Technol 109:25–31

    CAS  Google Scholar 

  54. Sheng J, Vannela R, Rittmann BE (2011) Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. Environ Sci Technol 45:3795–3802

    CAS  Google Scholar 

  55. Toepfl S (2006) Pulsed electric fields (PEF) for permeabilization of cell membranes in food- and bioprocessing applications, process and equipment design and cost analysis. Doctoral Thesis. Technological University of Berlin

  56. Coustets M, Al-Karablieh N, Thomsen C, Teissié J (2013) Flow process for electroextraction of total proteins from microalgae. J Membr Biol 246:751–760

    CAS  Google Scholar 

  57. Wang Y, Wang B, Li L (2008) Keeping quality of tomato fruit by high electrostatic field pretreatment during storage. J Sci Food Agric 88:464–470

    CAS  Google Scholar 

  58. Palanimuthu V, Rajkumar P, Orsat V et al (2009) Improving cranberry shelf-life using high voltage electric field treatment. J Food Eng 90:365–371

    CAS  Google Scholar 

  59. Zeng XA, Yu SJ, Zhang L, Chen XD (2008) The effects of AC electric field on wine maturation. Innov Food Sci Emerg Technol 9:463–468

    CAS  Google Scholar 

  60. Hsieh C-W, Ko W-C (2008) Effect of high-voltage electrostatic field on quality of carrot juice during refrigeration. LWT Food Sci Technol 41:1752–1757

    CAS  Google Scholar 

  61. Yao M, Mainelis G, An HR (2005) Inactivation of microorganisms using electrostatic fields. Environ Sci Technol 39:3338–3344

    CAS  Google Scholar 

  62. Bu D, Liu Y, Zhou Y et al (2005) Inactivation effects of electrostatic field on Bacillus subtilis. J Electrostat 63:847–852

    Google Scholar 

  63. Xu D, Phillips JC, Schulten K (1996) Protein response to external electric fields: relaxation, hysteresis, and echo. J Phys Chem 100:12108–12121

    CAS  Google Scholar 

  64. Rivas L, Soares CM, Baptista AM et al (2005) Electric-field-induced redox potential shifts of tetraheme cytochromes C3 immobilized on self-assembled monolayers: surface-enhanced resonance raman spectroscopy and simulation studies. Biophys J 88:4188–4199

    CAS  Google Scholar 

  65. Ma L, Liu C (2010) Preparation of chitosan microspheres by ionotropic gelation under a high voltage electrostatic field for protein delivery. Colloids Surf B Biointerfaces 75:448–453

    CAS  Google Scholar 

  66. Touya G, Reess T, Pécastaing L et al (2006) Development of subsonic electrical discharges in water and measurements of the associated pressure waves. J Phys D Appl Phys 39:5236–5244

    CAS  Google Scholar 

  67. Samarasinghe N, Fernando S, Lacey R, Faulkner WB (2012) Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renew Energy 48:300–308

    CAS  Google Scholar 

  68. Lee AK, Lewis DM, Ashman PJ (2012) Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenergy 46:89–101

    CAS  Google Scholar 

  69. Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121

    CAS  Google Scholar 

  70. Norton T, Sun D-W (2008) Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technol 1:2–34

    Google Scholar 

  71. Balasundaram B, Harrison S, Bracewell DG (2009) Advances in product release strategies and impact on bioprocess design. Trends Biotechnol 27:477–485

    CAS  Google Scholar 

  72. Lee AK, Lewis DM, Ashman PJ (2013) Force and energy requirement for microalgal cell disruption: an atomic force microscope evaluation. Bioresour Technol 128:199–206

    CAS  Google Scholar 

  73. Cho S-C, Choi W-Y, Oh S-H et al (2012) Enhancement of lipid extraction from marine microalga, Scenedesmus associated with high-pressure homogenization process. J Biomed Biotechnol. Article ID 359432, pp 6. doi:10.1155/2012/359432

  74. Mendes-Pinto MM, Raposo MFJ, Bowen J et al (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13:19–24

    Google Scholar 

  75. Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323–331

    CAS  Google Scholar 

  76. Ma Y-A, Cheng Y-M, Huang J-W et al (2014) Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. Bioprocess Biosyst Eng XX:1–7

    Google Scholar 

  77. Gerde JA, Montalbo-Lomboy M, Yao L et al (2012) Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresour Technol 125:175–181

    CAS  Google Scholar 

  78. Nowotarski K, King PM, Joyce EM, Mason TJ (2012) Ultrasonic disruption of algae cells. In: AIP conference proceedings, pp 237–240

  79. Halim R, Rupasinghe TWT, Tull DL, Webley PA (2013) Mechanical cell disruption for lipid extraction from microalgal biomass. Bioresour Technol 140:53–63

    CAS  Google Scholar 

  80. Cravotto G, Boffa L, Mantegna S et al (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902

    CAS  Google Scholar 

  81. Adam F, Abert-Vian M, Peltier G, Chemat F (2012) “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresour Technol 114:457–465

    CAS  Google Scholar 

  82. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  83. Araujo GS, Matos LJBL, Fernandes JO et al (2013) Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrason Sonochem 20:95–98

    CAS  Google Scholar 

  84. Kwang HC, Lee HJ, Koo SY et al (2010) Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. J Agric Food Chem 58:793–797

    Google Scholar 

  85. Ruen-ngam D, Shotipruk A, Pavasant P (2011) Comparison of extraction methods for recovery of astaxanthin from Haematococcus pluvialis. Sep Sci Technol 46:64–70

    CAS  Google Scholar 

  86. Zou T-B, Jia Q, Li H-W et al (2013) Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haemotococcus pluvialis. Mar Drugs 11:1644–1655

    CAS  Google Scholar 

  87. Plaza M, Santoyo S, Jaime L et al (2012) Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT Food Sci Technol 46:245–253

    CAS  Google Scholar 

  88. Kong W, Liu N, Zhang J et al (2014) Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. J Food Sci Technol 51(9):2006–2013

  89. Macías-Sánchez MD, Mantell C, Rodríguez M et al (2009) Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 77:948–952

    Google Scholar 

  90. Pasquet V, Chérouvrier J-R, Farhat F et al (2011) Study on the microalgal pigments extraction process: performance of microwave assisted extraction. Process Biochem 46:59–67

    CAS  Google Scholar 

  91. Janczyk P, Wolf C, Souffrant WB (2005) Evaluation of nutritional value and safety of the green microalgae Chlorella vulgaris treated with novel processing methods. Arch Zootech 8:132–147

    Google Scholar 

  92. Zhao G, Chen X, Wang L et al (2013) Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresour Technol 128:337–344

    CAS  Google Scholar 

  93. Chan C-H, Yusoff R, Ngoh G-C, Kung FWL (2011) Microwave-assisted extractions of active ingredients from plants. J Chromatogr A 1218:6213–6225

    CAS  Google Scholar 

  94. Mandal V, Yogesh-Mohan SH (2007) Microwave assisted extraction an innovative and promising extraction tool for medicinal plant research. Pharmacogn Rev 1:7–18

    CAS  Google Scholar 

  95. Balasubramanian S, Allen JD, Kanitkar A, Boldor D (2011) Oil extraction from Scenedesmus obliquus using a continuous microwave system—design, optimization, and quality characterization. Bioresour Technol 102:3396–3403

    CAS  Google Scholar 

  96. Luque De Castro MD, Jiménez-Carmona MM, Fernández-Pérez V (1999) Towards more rational techniques for the isolation of valuable essential oils from plants. TrAC Trends Anal Chem 18:708–716

    CAS  Google Scholar 

  97. Herrero M, Cifuentes A, Ibañez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae—a review. Food Chem 98:136–148

    CAS  Google Scholar 

  98. Herrero M, Ibañez E, Señorans FJ, Cifuentes A (2003) Accelerated solvent extracts from Spirulina platensis microalga: determination of their antioxidant activity and analysis by micellar electrokinetic chromatography. J Chromatogr A 1047:195–203

    Google Scholar 

  99. Denery JR, Dragull K, Tang CS, Li QX (2004) Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal Chim Acta 501:175–181

    CAS  Google Scholar 

  100. Rodríguez-Meizoso I, Jaime L, Santoyo S et al (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biomed Anal 51:456–463

    Google Scholar 

  101. Mendes RL, Nobre BP, Cardoso MT et al (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chim Acta 356:328–334

    CAS  Google Scholar 

  102. Qiuhui H (1999) Supercritical carbon dioxide extraction of spirulina platensis component and removing the stench. J Agric Food Chem 47:2705–2706

    CAS  Google Scholar 

  103. Couto RM, Simões PC, Reis A et al (2010) Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng Life Sci 10:158–164

    CAS  Google Scholar 

  104. Casas-Cardoso L, Mantell-Serrano C, Rodriguez-Rodriguez M et al (2012) Extraction of carotenoids and fatty acids from microalgae using supercritical technology. Am J Anal Chem 3:877–883

    Google Scholar 

  105. Bong SC, Loh SP (2013) A study of fatty acid composition and tocopherol content of lipid extracted from marine microalgae, Nannochloropsis oculata and Tetraselmis suecica, using solvent extraction and supercritical fluid extraction. Int Food Res J 20:721–729

    CAS  Google Scholar 

  106. Wang H-M, Pan J-L, Chen C-Y et al (2010) Identification of anti-lung cancer extract from Chlorella vulgaris CC by antioxidant property using supercritical carbon dioxide extraction. Process Biochem 45:1865–1872

    CAS  Google Scholar 

  107. Mendiola JA, Jaime L, Santoyo S et al (2007) Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chem 102:1357–1367

    CAS  Google Scholar 

  108. Mendiola JA, Rodríguez-Meizoso I, Señoráns FJ et al (2008) Antioxidants in plant foods and microalgae extracted using compressed fluids. Electron J Environ Agric Food Chem 7:3301–3309

    CAS  Google Scholar 

  109. Mendes RL, Coelho JP, Fernandes HL et al (1995) Applications of supercritical CO2 extraction to microalgae and plants. J Chem Technol Biotechnol 62:53–59

    CAS  Google Scholar 

  110. Mendiola JA, Santoyo S, Cifuentes A et al (2008) Antimicrobial activity of sub- and supercritical CO2 extracts of the green alga Dunaliella salina. J Food Prot 71:2138–2143

    CAS  Google Scholar 

  111. Fabregas J, Herrero C (1985) Marine microalgae as a potential source of single cell protein (SCP). Appl Microbiol Biotechnol 23:110–113

    CAS  Google Scholar 

  112. Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Bio Ecol 145:79–99

    CAS  Google Scholar 

  113. Becker EW (1994) Microalgae: biotechnology and microbiology. Press Syndicate of the University of Cambridge, Cambridge

    Google Scholar 

  114. Becker EW (2007) Microalgae as a source of protein. Biotechnol Adv 25:207–210

    CAS  Google Scholar 

  115. Sipaúba-Tavares LH, Pereira A (2008) Large scale laboratory cultures of Ankistrodesmus gracilis (Reisch) Korsikov (Chlorophyta) and Diaphanosoma biergei Korinek, 1981 (Cladocera). Braz J Biol 68:875–883

    Google Scholar 

  116. Safi C, Charton M, Ursu AV et al (2014) Release of hydro-soluble microalgal proteins using mechanical and chemical treatments. Algal Res 3:55–60

    Google Scholar 

  117. Volkman JK, Jeffrey SW, Nichols PD et al (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    CAS  Google Scholar 

  118. Brown MR (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids sugars and pigments. J Exp Mar Biol Ecol 161:91–113

    CAS  Google Scholar 

  119. Barrett SM (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J Exp Mar Biol Ecol 161:115–134

    Google Scholar 

  120. Viso AC, Marty JC (1993) Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533

    CAS  Google Scholar 

  121. Renaud SM, Thinh L-V, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159

    CAS  Google Scholar 

  122. Brown MR, Farmer CL (1994) Riboflavin content of six species of microalgae used in mariculture. J Appl Phycol 6:61–65

    CAS  Google Scholar 

  123. Brown MR, Miller KA (1992) The ascorbic acid content of eleven species of microalgae used in mariculture. J Appl Phycol 4:205–215

    CAS  Google Scholar 

  124. Brown MR, Mular M, Miller I et al (1999) The vitamin content of microalgae used in aquaculture. J Appl Phycol 11:247–255

    CAS  Google Scholar 

  125. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    CAS  Google Scholar 

  126. Becker EW (2013) Handbook of microalgal culture: applied phycology and biotechnology. In: Richmond A (ed) Bioactive and novel chemicals from microalgae, chapter 26. Blackwell Science, Oxford

  127. Cerön-García MDC, Campos-Pérez I, Macias-Sánchez MD et al (2010) Stability of carotenoids in Scenedesmus almeriensis biomass and extracts under various storage conditions. J Agric Food Chem 58:6944–6950

    Google Scholar 

  128. Kim SM, Jung Y-J, Kwon O-N et al (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855

    CAS  Google Scholar 

  129. Raman R, Mohamad SE (2012) Astaxanthin production by freshwater microalgae Chlorella sorokiniana and marine microalgae tetraselmis sp. Pak J Biol Sci 15:1182–1186

    Google Scholar 

  130. Crupi P, Toci AT, Mangini S et al (2013) Determination of fucoxanthin isomers in microalgae (Isochrysis sp.) by high-performance liquid chromatography coupled with diode-array detector multistage mass spectrometry coupled with positive electrospray ionization. Rapid Commun Mass Spectrom 27:1027–1035

    CAS  Google Scholar 

  131. Sujatha K, Nagarajan P (2013) Optimization of growth conditions for carotenoid production from Spirulina platensis (Geitler). Int J Curr Microbiol Appl Sci 2:325–328

    Google Scholar 

  132. Vásquez-Suárez A, Guevara M, González M et al (2013) Growth and biochemical composition of Thalassiosira pseudonana (Thalassiosirales: Thalassiosiraceae) cultivated in semicontinuous system at different culture media and irradiances [Crecimiento y composición bioquímica de thalassiosira pseudonana (thalassi. Rev Biol Trop 61:1003–1013

    Google Scholar 

Download references

Acknowledgments

F.J. Barba thanks the Valencian Autonomous Government (Consellería d´Educació, Cultura i Esport. Generalitat Valenciana) for the postdoctoral fellowship of the VALi+d program “Programa VALi+d per a investigadors en fase postdoctoral 2013” (APOSTD/2013/092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco J. Barba or Nabil Grimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barba, F.J., Grimi, N. & Vorobiev, E. New Approaches for the Use of Non-conventional Cell Disruption Technologies to Extract Potential Food Additives and Nutraceuticals from Microalgae. Food Eng Rev 7, 45–62 (2015). https://doi.org/10.1007/s12393-014-9095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-014-9095-6

Keywords

Navigation