Skip to main content
Log in

Differential down-regulation of zeaxanthin epoxidation in two rice (Oryza sativa L.) cultivars with different chilling sensitivities

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

When the leaf segments of rice (Oryza sativa L.) plants were subjected to chilling in the moderate light, zeaxanthin (Zx) formation was faster in a chilling-tolerant Dongjin-byeo (DJ) than in a chilling-sensitive IR841. Although the rate of Zx formation was accelerated by the treatment of 5 mM salicylaldoxime, an inhibitor of Zx epoxidase (ZE), there was almost no changes in DJ. A similar result was observed when leaf segments were treated with 50 mM sodium fluoride, a potent inhibitor of chloroplast phosphatase. The slow Zx epoxidation in IR841 during light-chilling was confirmed in leaf segments treated with 10 mM dithiothreitol, an inhibitor of violaxanthin de-epoxidase (VDE). However, the differences between the two cultivars were not observed at 25oC. These results suggest that compared with IR841 the higher rate of Zx formation in DJ is not due to the higher VDE activity in DJ but is due to more rapid down-regulation of ZE in DJ, possibly by its phosphorylation. Compared with DJ, IR841 accumulated more superoxide with PSI inactivation during light-chilling, which eliminates the possibility of increased ZE down-regulation in DJ leaves by photo-oxidation. In vitro study with alkaline phosphatase supports the idea of down-regulation of ZE by phosphorylation under light-chilling condition. We propose that this reversible down-regulation of Zx epoxidation possibly by the phosphorylation of ZE is an important regulation mechanism of violaxanthin cycle that confers chilling tolerance of a rice cultivar under chilling stress in the light with moderate intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams WWIII, Demmig-Adams B, Rosenstiel TN, Brightwell AK, Ebbert V (2002) Photosynthesis and photoprotection in overwintering plants. Plant Biol 4:545–557

    Article  Google Scholar 

  • Aro E-M, McCaffery S, Anderson JM (1993) Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol 103:835–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnoux P, Morosinotto T, Saga G, Bassi R, Pignol D (2009) A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. Plant Cell 21:2036–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arvidsson P-O, Carlsson M, Stefánsson H, Albertsson P-A, Akerlund H-E (1997) Violaxanthin accessibility and temperature dependency for de-epoxidation in spinach thylakoid membranes. Photosynth Res 52:39–48

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Björkman O (1991) Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta 184:226–234

    Article  CAS  PubMed  Google Scholar 

  • Bratt CE, Arvidsson P-O, Carlsson M, Åkerlund H-E (1995) Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosynth Res 45:169–175

    Article  CAS  PubMed  Google Scholar 

  • Carlberg I, Bingsmark S, Vennigerholz F, Larsson UK, Anderson Bexcitation energy in leaves in 2% (1992) Low temperature effects on thylakoid protein phosphorylation and membrane dynamics. Biochim Biophys Acta 1099:111–117

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2012) Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in arabidopsis. Plant Physiol Biochem 58:66–82

    Article  CAS  PubMed  Google Scholar 

  • Demmig B, Winter K, Krüger A, Czygan F-C (1987) Photoinhibition and zeaxanthin formation in intact leaves: A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demmig-Adams B, Winter K, Krüger A, Czygen F-C (1989) Zeaxanthin and the induction and relaxation kinetics of the dissipation of excess excitation energy in leaves in 2% O2, 0% CO2. Plant Physiol 90:887–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demmig-Adams B, Adams WWIII, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    Article  CAS  Google Scholar 

  • Eskling M, Arvidsson P-O, Åkerlund H-E (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100:806–816

    Article  CAS  Google Scholar 

  • Gilmore AM, Bjökman O (1994a) Adenine nucleotides and the xanthophyll cycle in leaves. I. Effects of CO2- and temperaturelimited photosynthesis on adenylate energy charge and violaxanthin de-epoxidation. Planta 192:526–536

    Article  CAS  Google Scholar 

  • Gilmore AM, Bjökman O (1994b) Adenine nucleotides and the xanthophyll cycle in leaves. II. Comparison of the effects of CO2- and temperature-limited photosynthesis on photosystem II fluorescence quenching, the adenylate energy charge and violaxanthin de-epoxidation in cotton. Planta 192:537–544

    Article  CAS  Google Scholar 

  • Gilmore AM, Ball MC (2000) Protection and storage of chlorophyll in overwintering evergreens. Proc Natl Acad Sci USA 97:11098–11101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruszecki WI, Grudzinski W, Banaszek-Glos A, Matula M, Kernen P, Krupa Z, Sielewiesiuk J (1999) Xanthophyll pigments in lightharvesting complex II in monomolecular layers: localisation, energy transfer and orientation. Biochim Biophys Acta 1412:173–183

    Article  CAS  PubMed  Google Scholar 

  • Gruszecki WI, Grudzinski W, Gospodarek M, Patyra M, Maksymiec W (2006) Xanthophyll-induced aggregation of LHCII as a switch between light-harvesting and energy dissipation systems. Biochim Biophys Acta 1757:1504–1511

    Article  CAS  PubMed  Google Scholar 

  • Hager A, Holocher K (1994) Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192:581–589

    Article  CAS  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151

    Article  Google Scholar 

  • Hwang HJ, Xu CC, Moon BY, Lee C-H (2003) Recovery from lowtemperature photoinhibition is related to dephosphorylation of phosphorylated CP29 rather than zeaxanthin epoxidation in rice leaves. J Plant Biol 46:122–129

    Article  CAS  Google Scholar 

  • Ivanov AG, Morgan RM, Gray GR, Velitchkova MY, Hunder NPA (1998) Temperature/light dependent development of selective resistance to photoinhibition of photosystem I. FEBS Lett 430:288–292

    Article  CAS  PubMed  Google Scholar 

  • Jahns P (1995) The xanthophyll cycle in intermittent light-grown pea plants: possible functions of chlorophyll a/b-binding proteins. Plant Physiol 108:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: The role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787:3–14

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Hwang HJ, Park H-S, Lee CB, Kwon YM, Lee C-H (1997) Differences in the rate of dephosphorylation of thylakoid proteins during dark incubation after chilling in the light between two rice (Oryza sativa L.) varieties. Plant Sci 128:159–168

    Article  CAS  Google Scholar 

  • Kim J-H, Kim S-J, Cho SH, Chow WS, Lee C-H (2005) Photosystem I acceptor side limitation is a prerequisite for the reversible decrease in the maximum extent of P700 oxidation after shortterm chilling in the light in four plants species with different chilling sensitivities. Physiol Plant 123:100–107

    Article  CAS  Google Scholar 

  • Klughammer C and Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192:261–268

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis - the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Mauro S, Dainese P, Lannoye R, Bassi R (1997) Cold-resistant and cold-sensitive maize differ in the phosphorylation of the photosystem II subunit, CP29. Plant Physiol 115:171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neubauer C, Yamamoto HY (1994) Membrane barriers and mehlerperoxidase reaction limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts. Photosynth Res 39:137–147

    Article  CAS  PubMed  Google Scholar 

  • Öquist G, Huner NP (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    Article  PubMed  Google Scholar 

  • Peter GF, Thornber JP (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem 266:16745–16754

    CAS  PubMed  Google Scholar 

  • Pfündel E, Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42:89–109

    Article  PubMed  Google Scholar 

  • Pfündel E, Dilley R (1993) The pH dependence of violaxanthin deepoxidation in isolated pea chloroplasts. Plant Physiol 101:65–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinhold C, Niczyporuk S, Beran KC, Jahns P (2008) Short-term down-regulation of zeaxanthin epoxidation in Arabidopsis thaliana in response to photo-oxidative stress conditions. Biochim Biophys Acta 1777:462–469

    Article  CAS  PubMed  Google Scholar 

  • Schaller S, Latowski D, Jemioła-Rzemińska M, Wilhelm C, Strzałka K, Goss R (2010) The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII). Biochim Biophys Acta 1797:414–424

    Article  CAS  PubMed  Google Scholar 

  • Siefermann D, Yamamoto HY (1974) Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. III. Reaction kinetics and effect of light intensity on de-epoxidase activity and substrate availability. Biochim Biophys Acta 357:144–150

    Article  CAS  PubMed  Google Scholar 

  • Somersalo S, Krause GH (1989) Photoinhibition at chilling temperature: fluorescence characteristics of unhardened and cold-acclimated spinach leaves. Planta 177:409–416

    Article  CAS  PubMed  Google Scholar 

  • Sonoike K (2006) Photoinhibition and protection of photosystem I. In: John HG (ed) Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidireductase, Springer, Dordrecht, pp 657–668

    Google Scholar 

  • Thayer SS, Björkman O (1990) Leaf xanthophylls content and composition in sun and shade determined by HPLC. Photosynth Res 23:331–343

    Article  CAS  PubMed  Google Scholar 

  • Xu CC, Jeon YA, Lee C-H (1999a) Relative contributions of photochemical and non-photochemical routes to excitation energy dissipation in rice and barley illuminated at a chilling temperature. Physiol Plant 107:447–453

    Article  CAS  Google Scholar 

  • Xu CC, Jeon YA, Hwang HJ, Lee C-H (1999b) Suppression of zeaxanthin epoxidation by chloroplast phosphatase inhibitors in rice leaves. Plant Sci 146:27–34

    Article  CAS  Google Scholar 

  • Yamamoto HY, Chang JL, Aihara MS (1967) Light-induced interconversion of violaxanthin and zeaxanthin in New Zealand spinachleaf segments. Biochim Biophys Acta 141:342–347

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Bassi R (1996) Carotenoids: localization and function. In: Ort DR, Yocum CF (eds) Oxygenic Photosynthesis: the Light Reaction. Kluwer Academic Publishers, Dordrecht, pp 539–563

    Google Scholar 

  • Yamamoto HY, Kamite L (1972) The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta 267:538–543

    Article  CAS  PubMed  Google Scholar 

  • Zulfugarov IS, Tovuu A, Eu Y-J, Dogsom B, Poudyal RS, Nath K, Hall M, Banerjee M, Yoon UC, Moon Y-H, An G, Jansson S, Lee C-H (2014a) Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC Plant Biol 14:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Zulfugarov IS, Tovuu A, Lee C-H. (2014b) Acceleration of cyclic electron flow in rice plants (Oryza sativa L.) deficient in the PsbS protein of Photosystem II. Plant Physiol Biochem 84:233

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-Hwan Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HS., Hoang, M.H., Jeon, Y.A. et al. Differential down-regulation of zeaxanthin epoxidation in two rice (Oryza sativa L.) cultivars with different chilling sensitivities. J. Plant Biol. 60, 413–422 (2017). https://doi.org/10.1007/s12374-016-0483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0483-8

Keywords

Navigation