Skip to main content
Log in

The phylogenetic relationships of Asparagales in Korea based on five plastid DNA regions

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

We performed a phylogenetic analysis of 13 families of Asparagales sensu APG III, including 59 Korean taxa representing 10 families based on five plastid regions sequences (matK, rbcL, rpoC1, rps3, and atpF-H intergenic spacer). Parsimony and Bayesian analyses were conducted to clarify the relationships among Korean Asparagales. Among the five regions, matK and atpF-H were the most informative. The most congruent phylogenetic trees were obtained from the combinations of four regions excluding atpF-H. Although both the matK and rbcL gene trees implied that the family system of Asparagales sensu APG III should be modified to include three expanded families, our combined four-regions data set resulted in a highly resolved topology with strong support for the following: (1) Asparagaceae s.l.; (2) Amaryllidaceae s.l.; (3) Hemerocallidoideae of Xanthorrhoeaceae s.l.; (4) Iridaceae; (5) Hypoxidaceae; and (6) Orchidaceae. However, the position of Scilla (Scilloideae of Asparagaceae s.l.) was ambiguous. Hemerocallidoideae was a sister group of both the expanded families of Asparagaceae s.l. and Amaryllidaceae s.l., which are considered the core asparagoids, while Orchidaceae was sister to all other Asparagales. We discuss differentiation of the morphological character within the Korean Asparagales, which clearly suggests that the subfamily Nolinoideae of Asparagaceae s.l. exhibits different character states than the other subfamilies. We compared 10 representative morphological characters to the molecular phylogenetic relationships, and propose that the circumscription within Asparagales sensu APG III needs to be reconsidered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APG (Angiosperm Phylogeny Group) (1998) An ordinal classification for the families of flowering plants. Ann Missouri Bot Gard 18:531–553

    Google Scholar 

  • APG (Angiosperm Phylogeny Group) II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • APG (Angiosperm Phylogeny Group) III (2009) An updates of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Barker FK, Lutzoni FM (2002) The utility of the incongruence length difference test. Syst Biol 51:625–637

    Article  PubMed  Google Scholar 

  • Bentham G, Hooker JD (1883) Genera Plantarum, vol III, part 2. Reeve, London

    Google Scholar 

  • Bogler DJ, Pires JC, Francisco-Ortega J (2006) Phylogeny of Agavaceae based on ndhF, rbcL and ITS sequences: implications of molecular data for classification, In JT Columbus, EA Friar, JM Porter, LM Prince, MG Simpson, eds, Monocots: Comparative biology and evolution, Rancho Santa Ana Botanic Garden, California, pp 313–328

    Google Scholar 

  • Bogler DJ, Simpson BB (1995) A chloroplast DNA study of the Agavaceae. Syst Bot 20:191–205

    Article  Google Scholar 

  • Bogler DJ, Simpson BB (1996) Phylogeny of Agavaceae based on ITS rDNA sequence variation. Am J Bot 83:1225–1235

    Article  CAS  Google Scholar 

  • CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797

    Article  Google Scholar 

  • Chase MW, Cowan RS, Hollingsworth PM, Van den Berg C, Madrinan S, Petersen G, Seberg O, Jørgsensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar GA, Richardson JE, Hollingsworth ML, Barraclough TG, Kelly L, Wilkinson M (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299

    Google Scholar 

  • Chase MW, De Bruijn AY, Cox AV, Reeves G, Rudall PJ, Johnson MA, Eguiarte LE (2000a) Phylogenetics of asphodelaceae (Asparagales): An analysis of plastid rbcL and trnL-F DNA sequences. Ann Bot 86:935–951

    Article  CAS  Google Scholar 

  • Chase MW, Duvall MR, Hills HG, Conran JG, Cox AV, Eguarte LE, Hartwell J, Fay MF, Caddick LR, Cameron KM, Hoot S (1995a) Molecular phylogenetic of Lilianae. In PJ Rudall, PJ Cribb, DF Cutler, CJ Humphries, eds, Monocotyledons: Systematics and evolution, Royal Botanic Gardens, Kew, London, pp 109–137

    Google Scholar 

  • Chase MW, Fay MF, Devey DS, Maurin O, Rønsted N, Davies TJ, Pillon Y, Petersen G, Seberg O, Tamura MN, Asmussen CB, Hilu K, Borsch T, Davis JI, Stevenson DW, Pires JC, Givnish TJ, Sytsma KJ, McPherson MA, Graham SW, Rai HS (2006) Multigene analyses of monocot relationships: A summary, In T Columbus, EA Friar, JM Porter, LM Prince, MG Simpson, eds, Monocots: Comparative biology and evolution, J Rancho Santa Ana Botanic Garden, California, pp 63–75

    Google Scholar 

  • Chase MW, Reveal JL, Fay MF (2009) A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Bot J Linn Soc 161:132–136

    Article  Google Scholar 

  • Chase MW, Rudall PJ, Conran JG (1996) New circumscription and a new family of asparagoid Lilies: Genera formerly included in Anthericaceae. Kew Bull 51:667–680

    Article  Google Scholar 

  • Chase MW, Rudall PJ, Conran JG (1997) Validation of the family name boryaceae. Kew Bull 52:416

    Article  Google Scholar 

  • Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Molvray M, Kores PJ, Givnish TJ, Sytsma KJ, Pires JC (2000b) Higher-level systematics of the monocotyledons: An assessment of current knowledge and a new classification, In KL Wilson, DA Morrison, eds, Monocots: Systematics and evolution, CSIRO Publishing, Melbourne, pp 3–16

    Google Scholar 

  • Chase MW, Stevenson DW, Wilkin P, Rudall PJ (1995b) Monocots systematics: A combined analysis. In PJ Rudall, PJ Cribb, DF Cutler, CJ Humphries, eds, Monocotyledons: Systematics and evolution, Royal Botanic Gardens, Kew, London, pp 685–730

    Google Scholar 

  • Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR, Chase MW (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 33:75–90

    Article  PubMed  CAS  Google Scholar 

  • Clifford HT, Henderson RJF, Conran JG (1998) Hemerocallidaceae. In K Kubitzki, eds, The families and genera of vascular plants (except Orchidaceae), Vol 3. Springer-Verlag, Berlin, Heidelberg, New York, pp 245–253

    Google Scholar 

  • Conran JG, Tamura MN (1998) Convallariaceae. In K Kubitzki, eds, The Families and Genera of Vascular Plants (except Orchidaceae), Vol 3. Springer-Verlag, Berlin, Heidelberg, New York, pp 186–198

    Google Scholar 

  • Conran JG (1989) Cladistic analysis of some net-veined liliiflorae. Pl Syst Evol 168:123–141

    Article  Google Scholar 

  • Conran JG, Chase MW, Rudall PJ (1997) Two new monocot families: Anemarrhenaceae and Behniaceae (Lilianae: Asparagales). Kew Bull 52:995–999

    Article  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia Univ Press, New York

    Google Scholar 

  • Cunningham CW (1997) Is congruence between data partitions a reliable predictor of phylogenetic accuracy-Empirically testing an iterative procedure for choosing among phylogenetic methods. Syst Biol 46:464–478

    Article  PubMed  CAS  Google Scholar 

  • Dahlgren RMT, Clifford HT (1982) The monocotyledons - A comparative study. Academic Press, London.

    Google Scholar 

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of the monocotyledons: Structure, evolution, and taxonomy. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Dahlgren RMT, Rasmusen FN (1983) Monocotyledon evolution. Characters and phylogenetic estimation. Evol Biol 16:255–395

    Article  Google Scholar 

  • Daumann E (1970) Das Blütennektarium der Monocotyledonen unter besonderer Berüksichtigung seiner systematischen und phylogenetischen Bedeutung. Feddes Repert Z Bot Taxon Geobot 80:463–590.

    Article  Google Scholar 

  • Devey DS, Leitch I, Rudall PJ, Pires JC, Pillon Y, Chase MW (2006) Systematics of Xanthorrhoeaceae sensu lato, with an emphasis on Bulbine. In JT Columbus, EA Friar, JM Porter, LM Prince, MG Simpson, eds, Monocots: Comparative biology and evolution, Rancho Santa Ana Botanic Garden, California, pp 345–351

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Duvall MR, Clegg MT, Chase MW, Clark WD, Kress WJ, Hills HG, Eguiarte LE, Smith JF, Gaut BS, Zimmer EA, Learn Jr GH (1993) Phylogenetic hypotheses for the monocotyledons constructed from rbcL data. Ann Missouri Bot Gard 80:607–619

    Article  Google Scholar 

  • Farris JS, Kallersjo SM, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Fay MF, Chase MW (1996) Resurrection of Themidaceae for Brodiaea alliance and recircumscription of Alliaceae, Amaryllidaceae, and Agapanthoideae. Taxon 45:441–451

    Article  Google Scholar 

  • Fay MF, Rudall PJ, Sullivan S, Stobart KL, De Bruijn AY, Reeves G, Qamaruz-Zaman F, Hong WP, Joseph J, Hahn WJ, Conran JG, Chase MW (2000) Phylogenetic studies of asparagales based on four plastid DNA regions. In KL Wilson, DA Morrison, eds, Monocots: Systematics and evolution, CSIRO Publishing, Melbourne, pp 360–371

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 20:406–16

    Article  Google Scholar 

  • Frölich D, Barthlott W (1988) Mikromorphologie der epicuticularen Wachse und das System der Monokotylen. Tropische und Subtropische Pflanzenwelt 63:1–135

    Google Scholar 

  • Fulvio TE, Cave MS (1964) Embryology of Blandfordia nobilis Smith (Liliaceae), with special reference to its taxonomic position. Phytomorphology 14:487–499

    Google Scholar 

  • Furness CA, Rudall PJ (1999) Microsporogenesis in monocotyledons. Ann Bot 84:475–499

    Article  Google Scholar 

  • Goldblatt P, Manning JC, Rudall P (1998) Iridaceae. In K Kubitzki, eds, The families and genera of vascular plants (except Orchidaceae), Vol 3. Springer-Verlag, Berlin, Heidelberg, New York, pp 295–333

    Google Scholar 

  • Graham SW, Zgurski JM, McPherson MC, Cherniawsky DM, Saarela JM, Horne EF, Smith SY, Wong WA, O’Brien HE, Biron VL, Pires JC, Olmstead RG, Chase MW, Rai HS (2006) Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. In JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds, Monocots: Comparative biology and evolution, Rancho Santa Ana Botanic Garden, California, pp 3–21

    Google Scholar 

  • Granick E (1944) A Karyosystematic study of the genus Agave. Am J Bot 31:283–298

    Article  Google Scholar 

  • Gravendeel B, Chase MW, de Vogen EF, Roos MC, Mes THM, Bachmann K (2001) Molecular phylogeny of Coelogyne (Epidendroideae, Orchidaceae) based on plastid RLFPs, matK and nuclear ribosomal ITS sequences: evidence for polyphyly. Am J Bot 88:1915–1927

    Article  PubMed  CAS  Google Scholar 

  • Hilu K, Borsch DT, Muller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R, Sauquet H, Neinhuis C, Slotta TAB, Rohwer JG, Campbell CS, Chatrou LW (2003) Angiosperm phylogeny based on matK sequence information. Am J Bot 90:1758–1776

    Article  PubMed  CAS  Google Scholar 

  • Huber H (1969) Die samenmerkmale und Verwandtschäftsverhaltnisse der Liliifloren. Mitt. Mitteilungen der Botanischen Staatssammlung München 8:219–538

    Google Scholar 

  • Hutchinson J (1934) The families of flowering plants: Arranged according to a new system based on their probable phylogeny, vol 2. Macmillan, London

    Google Scholar 

  • Hutchinson J (1959) The families of flowering plants: Arranged according to a new system based on their probable phylogeny, Ed 2, vol 2. Clarendon press, Oxford

    Google Scholar 

  • Jang CG, Kim YS (1998) Taxonomic relationships of the Korean Polygonatum (Liliaceae) using the RAPDs analysis. Korean J Pl Tax 28:371–384

    Google Scholar 

  • Jang CG, Pfosser MF (2002) A taxonomic review of Korean Asparagales and Liliales (Liliopsida). Korean J Pl Tax 32:449–465

    Google Scholar 

  • Joachim T, Sabrina AS, Barbara R (2006) Phylogenetic implication of the chloroplast rpoC1 intron loss in the Aizoaceae (Caryophyllales). Biochem Syst and Ecol 35:372–380

    Google Scholar 

  • Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Missouri Bot Gard 82:149–175

    Article  Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF (1999) Plant Systematics: A Phylogenetic Approach. Sunderland, Mass

    Google Scholar 

  • Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its applification in plant systematics. Ann Missouri Bot Gard 87:482–498

    Article  Google Scholar 

  • Kim CS, Koh JG, Moon MO, Kim SY (2008a) Hypoxis aurea Lour. (Hypoxidaceae): A rare species from Jeju island which is rediscovered seventy years after its first collection in Korea. Kor J Pl Res 21:226–229

    Google Scholar 

  • Kim JH, Kim DK, Forest F, Fay MF, Chase MW (2010) Molecular phylogenetics of Ruscaceae sensu lato and related families (Asparagales) based on plastid and nuclear DNA sequences. Ann Bot 106:775–790

    Article  PubMed  Google Scholar 

  • Kim KJ, Kim YD, Kim JH, Park SJ, Park CW, Sun BY, Yoo KO, Choi BH, Kim ST (2008b) Phylogenetic classification of Korean vascular flora according to the recent APG classification system. Korean J Pl Tax 38:197–222

    Article  Google Scholar 

  • Kim SC, Lee NS (2007) Generic delimitation and biogeography of Maianthemum and Smilacina (Ruscaceae sensu lato): preliminary results based on partial 3 matK gene and trnK 3 intron sequences of cpDNA. Pl Syst Evol 265:1–12

    Article  CAS  Google Scholar 

  • Kim YS, Lee WT (1985) A systematic study on Liliaceae in Korea IV: Anatomical study of genus Aspragus. Korean J Pl Tax 15:13–24

    Google Scholar 

  • Kim YS, Lee WT, Ko SC (1982) A systematic study on Liliaceae in Korea I: Karyology of Genus Hemerocallis. Korean J Pl Tax 12:63–77

    Google Scholar 

  • Kim YS, Oh BU (1985) A systematic study on Liliaceae in Korea III: Karyology of genus Asparagus. Korean J Pl Tax 15:1–12

    Google Scholar 

  • Ko SC, Kim YO, Kim YS (1985) A cytotaxonomical study on the tribe Ophiopogoneae in Korea. Korean J Pl Tax 15:111–125

    Google Scholar 

  • Kubitzki K (1998) Hostaceae. In K Kubitzki, eds, The Families and Genera of Vascular Plants (except Orchidaceae), Vol 3. Springer-Verlag, Berlin, Heidelberg, New York, pp 256–260

    Google Scholar 

  • Kuhl JC, Havey MJ, Martin WJ, Cheung F, Yuan Q, Landherr L, Hu Y, Leebens-Mack J, Town CD, Sink KC (2005) Comparative genome analyses in Asparagus. Genome 48:1052–1060

    Article  PubMed  CAS  Google Scholar 

  • LaFrankie JV (1985a) A note on seedling morphology and establishment growth in the genus Smilacina (Liliaceae). Bull Torrey Bot Club 112:313–317

    Article  Google Scholar 

  • LaFrankie JV (1985b) Morphological and systematic studies in the genus Smilacina (Liliaceae). Ph.D. Dissertation, Harvard University, Cambridge, Massachusetts

    Google Scholar 

  • LaFrankie JV (1986) Transfer of species of Smilacina to Maianthemum (Liliaceae). Taxon 35:584–589

    Article  Google Scholar 

  • Lee NS, Park HB (1993) A morphological study of the genus Maianthemum (Liliaceae). Korean J Pl Tax 23:201–216

    Google Scholar 

  • Lee TB (1979) Illustrated flora of Korea. Hyangmunsa, Seoul (in Korean)

    Google Scholar 

  • Maddison WP, Maddison DR (2000) MacClade: Analysis of phylogeny and character evolution. ver. 4.0. Sinauer Associates Inc, Massachusetts

    Google Scholar 

  • Maekawa F, Kaneko K (1968) Evolution of karyotype in Hosta (Liliaceae). J Jap Bot 43:132–140 (in Japanese with English summary)

    Google Scholar 

  • Mathew B (1988) Hostaceae, a new name for the invalid Funkiaceae. Kew Bull 43:302

    Article  Google Scholar 

  • Melchior H (1964) A Engler’s syllabus der Pflanzenfamilien, Bd II. Bornträger, Berlin-Nikolassee

    Google Scholar 

  • Nodall I (1998) Hypoxidaceae. In K Kubitzki, eds, The Families and Genera of Vascular Plants (except Orchidaceae), Vol 3. Springer-Verlag, Berlin, Heidelberg, New York, pp 286–294

    Google Scholar 

  • Nylander JAA, Ronquist F, Huelsenbeck JP, Aldrey JLN (2004) Bayesian Phylogenetic analysis of combined data. Systematic Biology 53:47–67

    Article  PubMed  Google Scholar 

  • Olmstead RG, Michaels HJ, Scott KM, Palmer JD (1992) Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann Missouri Bot Gard 79:249–265

    Article  Google Scholar 

  • Ooi K, Endo Y, Yokoyama J, Murakami N (1995) Useful primer designs to amplify DNA fragments of the plastid gene matK from angiosperm plants. J Jap Bot 70:328–331

    Google Scholar 

  • Pires JC, Maureira IJ, Givnish TJ, Sytsma KJ, Seberg O, Petersen G, Davis JI, Stevenson DW, Rudall PJ, Fay MF, Chase MW (2006) Phylogeny, genome size, and chromosome evolution of Asparagales. In JT Columbus, EA Friar, JM Porter, LM Prince, MG Simpson, eds, Monocots: Comparative biology and evolution, Rancho Santa Ana Botanic Garden, California, pp 287–304

    Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M (2004) Systematic and Biology of Silica in Monocotyledons. The Bot Rev 69:377–440

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rudall PJ (1998) Anatomical and molecular systematics of Asteliaceae and Hypoxidaceae. Bot J Linn Soc 127:1–42

    Article  Google Scholar 

  • Rudall PJ, Chase MW (1996) Systematics of Xanthorrhoeaceae sensu lato: Evidence of polyphyly. Telopea 6:629–647

    Google Scholar 

  • Rudall PJ, Conran JG, Chase MW (2000) Systematics of Ruscaceae/Convallariaceae: a combined morphological and molecular investigation. Bot J Linn Soc 134:73–92

    Google Scholar 

  • Rudall PJ, Fumess CA, Chase MW, Fay MF (1997) Microsporogenesis and follen sulcus type in Asparagales (Lilianae). Canadian J Bot 75:408–430

    Article  Google Scholar 

  • Satô D (1935) Analysis of the karyotypes in Yucca, Agave and the related genera with special reference to the phylogenetic significance. Jap J Genet 11:272–278

    Article  Google Scholar 

  • Satô D (1942) Karyotype alteration and phylogeny in Liliaceae and allied families. J Jap Bot 12:57–161

    Google Scholar 

  • Schulze W (1983) Beiträge zur Taxonomie der Liliifloren XII. Der Umfang der Agavaceen. Wiss. Z. Friedrich Schiller Univ. Jena, Math-Nat R 6:965–979 (Beitr. Phytotax. 11)

    Google Scholar 

  • Sen S (1978) Evolution and affinity of the genera Ruscus and Asparagus. J Indian Bot Soc 57:232–238

    Google Scholar 

  • Shinwari ZK (2000) Chloroplast DNA variation in Polygonatae sensu lato (Liliaceae). Pakistan J Bot 32:7–14

    Google Scholar 

  • Shinwari ZK, Kato H, Terauchi R, Kawano S (1994) Phylogenetic relationships among genera in the Liliaceae-Asparagoideae-Polygonatae s.l. inferred from rbcL gene sequence data. Pl Syst Evol 192:263–277

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Google Scholar 

  • Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sweere JA, Kuzoff RK, Kron KA, Chase MW, Swensen SM, Zimmer EA, Chaw SM, Gillespie LJ, Kress WJ, Sytsma KJ (1997) Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann Missouri Bot Gard 84:1–49

    Article  Google Scholar 

  • Steele KP, Vilgalys R (1994) Phylogenetic analysis of Polemoniaceae using nucleotide sequences of the plastid gene matK. Syst Bot 19:126–142

    Article  Google Scholar 

  • Stevenson DW, Loconte H (1995) Cladistic analysis of monocot families. In P.J. Rudall, P.J. Cribb, D.F. Cutler and C.J. Humphries, eds, Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp 543–578

    Google Scholar 

  • Swofford DL (2007) PAUP*: phylogenetic analysis using parsimony, ver. 4.10b10. Sinauer Associates Inc., Sunderland, MA, USA

    Google Scholar 

  • Takhtajan AL (1969) Flowering plants. Origin and dispersal. Oliver and Boyd, Edinbergh

    Google Scholar 

  • Takhtajan AL (1980) Outline of the classification of flowering plants (Magnoliophyta). Bot Rev (Lancaster) 46:225–359

    Article  Google Scholar 

  • Takhtajan AL (1997) Diversity and classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Tamura MN (1995) A Karyological review of the orders Asparagales and Liliales Monocotyledonae. Feddes Repert 106:83–111

    Article  Google Scholar 

  • Tamura MN, Yamashita J (2004) Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. J Plant Res 117:109–120

    Article  PubMed  CAS  Google Scholar 

  • Terauchi T, Ogihara Y, Tsunewaki K (1987) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops. VI. Complete nucleotide sequences of the rbcL genes encoding H and L type Rubisco large subunits in common Wheat and Ae. crassa 4x. J J Genetics 62:375–387

    Google Scholar 

  • Thomson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuc Acid Res 24:4876–4882

    Article  Google Scholar 

  • Yamashita J, Tamura MN (2000) Molecular phylogeny of the Convallariaceae (Asparagales). In KL Wilson and DA Morrison, eds, Monocots: Systematics and evolution, CSIRO Publishing, Melbourne, pp 387–400

    Google Scholar 

  • Zomlefer WB (1998) The genera of Hemerocallidaceae in the southeastern United States. Harvard Pap Bot 3:113–145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Hwan Kim.

Additional information

These authors contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DK., Kim, J.S. & Kim, JH. The phylogenetic relationships of Asparagales in Korea based on five plastid DNA regions. J. Plant Biol. 55, 325–341 (2012). https://doi.org/10.1007/s12374-011-0016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-011-0016-4

Keywords

Navigation