Skip to main content

Advertisement

Log in

Application of Vegetative Indices for Leaf Nitrogen Estimation in Sugarcane Using Hyperspectral Data

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Spectral indices are important tools for monitoring nitrogen levels in plants. This study assessed the potential application of spectral indices in monitoring the nitrogen nutritional status in sugarcane crops. Seven sugarcane varieties and three production environments were studied, with the SP813250 variety cultivated in all three experimental areas. Ammonium nitrate was used as the nitrogen source at doses of 0, 50, 100, and 150 kg ha−1. Leaf samples for hyperspectral analyses and Leaf Nitrogen Content (LNC) were collected during the maximum vegetative development phase of the crop. Based on reflectance data, 20 spectral indices were calculated and then subjected to simple linear regression (SLR) testing for LNC prediction. In the validation of prediction results, the coefficient of determination (R2) values, root mean square error (RMSE), and predicted relative error were used as reference. All models were calibrated using the 2012/13 crop data and validated using the 2013/14 crop data. Indices involving the 530–570 nm, 680–750 nm, and 750–1300 nm spectral ranges showed the best performance in model validation. Across all varieties and production environments, the most acceptable indices were: BNi (R2 > 0.66, RMSE < 3.50 g kg1), GNDVI (R2 > 0.65, RMSE < 3.67 g kg−1), NDRE (R2 > 0.68, RMSE < 3.18 g kg−1), RI-1db (R2 > 0.69, RMSE < 3.66 g kg−1), and VOGa (R2 > 0.69, RMSE < 3.44 g kg−1). The environment significantly influenced the predictive potential for the SP813250 variety, with some cases showing up to a 50% reduction in R2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Rahman, E.M., F.B. Ahmed, and B.M. Van Den. 2010. Estimation of sugarcane leaf nitrogen concentration using in situ spectroscopy. International Journal of Applied Earth Observation and Geoinformation 12: 52–57.

    Article  Google Scholar 

  • Alvares, C.A., J.L. Stape, P.C. Sentelhas, J.D.M. Gonçalves, and G. Sparovek. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.

    Article  ADS  Google Scholar 

  • Amaral, L.R., and J.P. Molin. 2014. The Effectiveness of Three Vegetation Indices Obtained from a Canopy Sensor in Identifying Sugarcane Response to Nitrogen. Agronomy Journal 106: 273–280.

    Article  Google Scholar 

  • Amaral, L.R., J.P. Molin, and J.S. Schepers. 2015. Algorithm for Variable-Rate Nitrogen Application in Sugarcane Based on Active Crop Canopy Sensor. Agronomy Journal 107: 1513–1523.

    Article  CAS  Google Scholar 

  • Amaral, L.R., R.G. Trevisan, and J.P. Molin. 2017. Canopy sensor placement for variable-rate nitrogen application in sugarcane fields. Precision Agriculture 19: 147–160.

    Article  Google Scholar 

  • Aparicio, N., D. Villegas, J. Casadesus, J.L. Araus, and C. Royo. 2000. Spectral Vegetation Indices as Nondestructive Tools for Determining Durum Wheat Yield. Agronomy Journal 92: 83–91.

    Article  Google Scholar 

  • Bagheri, N., H. Ahmadi, S.K. Alavipanah, and M. Omid. 2012. Soil-line vegetation indices for corn nitrogen content prediction. International Agrophysics 26: 103–108.

    Article  ADS  Google Scholar 

  • Barros, P.P.D.S., P.R. Fiorio, J.A.D.M. Demattê, J.A. Martins, Z.F. Montezano, and F.L.F. Dias. 2021. Estimation of leaf nitrogen levels in sugarcane using hyperspectral models. Ciência Rural 52: e20200630.

    Article  Google Scholar 

  • Blackburn, G.A. 1998. Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales. Remote Sensing of Environment 66: 273–285.

    Article  ADS  Google Scholar 

  • Bordonal, R.D.O., J.L.N. Carvalho, R. Lal, E.B. Figueiredo, B.G. Oliveira, and N. La Scala. 2018. Sustainability of sugarcane production in Brazil. A Review. Agronomy for Sustainable Development 38: 1–23.

    Article  Google Scholar 

  • Boschiero, B.N., E. Mariano, L.O. Torres-Dorante, T. Sattolo, R. Otto, P.L. Garcia, C.T.S. Dias, and P.C.O. Trivelin. 2020. Nitrogen fertilizer effects on sugarcane growth, nutritional status, and productivity in tropical acid soils. Nutrient Cycling in Agroecosystems 117: 367–382.

    Article  CAS  Google Scholar 

  • Buschmann, C. 1993. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing 14: 711–722.

    Article  ADS  Google Scholar 

  • Cammarano, D., G. Fitzgerald, R. Casa, and B. Basso. 2014. Assessing the Robustness of Vegetation Indices to Estimate Wheat N in Mediterranean Environments. Remote Sensing 6: 2827–2844.

    Article  ADS  Google Scholar 

  • Chen, X., Z. Cui, M. Fan, P. Vitousek, M. Zhao, W. Ma, Z. Wang, W. Zhang, X.Y. Yan, J. Yang, X. Deng, Q. Gao, Q. Zhang, S. Guo, J. Ren, S. Li, Y. Ye, Z. Wang, J. Huang, Q. Tang, Y. Sun, X.L. Peng, J. Zhang, M. Ele, Y. Zhu, J. Xue, G. Wang, L. Wu, N. An, L. Wu, L. Ma, W. Zhang, and F. Zhang. 2014. Producing more grain with lower environmental costs. Nature 514: 486–489.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Cheng, T., Y. Zhu, D. Li, X. Yao, and K. Zhou. 2018. Hyperspectral remote sensing of leaf nitrogen concentration in cereal crops. In Hyperspectral indices and image classifications for agriculture and vegetation, ed. S. Prasad, J.G. Thenkabail, and A.H. Lyon, 1–20. New York: Boca Raton London.

    Google Scholar 

  • Chu, X., Y. Guo, J. He, X. Yao, Y. Zhu, W. Cao, T. Cheng, and Y.C. Tian. 2014. Comparison of different hyperspectral vegetation indices for estimating canopy leaf nitrogen accumulation in rice. Agronomy Journal 106: 1911–1920.

    Article  Google Scholar 

  • Croft, H., J.M. Chen, X. Luo, P. Bartlett, B. Chen, and R.M. Staebler. 2017. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology 23: 3513–3524.

    Article  ADS  PubMed  Google Scholar 

  • Dash, J., and P.J. Curran. 2004. The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing 25: 5403–5413.

    Article  ADS  Google Scholar 

  • Dias, M.O.S., R. Maciel Filho, P.E. Mantelatto, O. Cavalett, C.E.V. Rossell, A. Bonomi, and M.R.L.V. Leal. 2015. Sugarcane processing for ethanol and sugar in Brazil. Environmental Development 15: 35–515.

    Article  Google Scholar 

  • Din, M., J. Ming, S. Hussain, S.T. Ata-Ul-Karim, M. Rashid, M.N. Tahir, S. Hua, and S. Wang. 2019. Estimation of dynamic canopy variables using hyperspectral derived vegetation indices under varying N rates at diverse phenological stages of rice. Frontiers in Plant Science 9: 1883.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng, W., H.Y. Zhang, Y.S. Zhang, S.L. Qi, Y.R. Heng, B.B. Guo, D.Y. Ma, and T.C. Guo. 2016. Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data. Field Crops Research 198: 238–246.

    Article  Google Scholar 

  • Gitelson, A., and M.N. Merzlyak. 1994. Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology b: Biology 22: 247–252.

    Article  CAS  Google Scholar 

  • Gopalasundaram, P., A. Bhaskaran, and P. Rakkiyappan. 2012. Integrated nutrient management in sugarcane. Sugar Tech 14: 3–20.

    Article  CAS  Google Scholar 

  • Gupta, R.K., D. Vijayan, and T.S. Prasad. 2003. Comparative analysis of red edge hyperspectral indices. Advances in Space Research 32: 2217–2222.

    Article  ADS  Google Scholar 

  • Hernandes, T.A.D., D.G. Duft, A.C.S. Luciano, M.R.L.V. Leal, and O. Cavalett. 2021. Identifying suitable areas for expanding sugarcane ethanol production in Brazil under conservation of environmentally relevant habitats. Journal of Cleaner Production 292: 125318.

    Article  CAS  Google Scholar 

  • Hou, W., M. Tränkner, J. Lu, J. Yan, S. Huang, T. Ren, and X. Li. 2019. Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. BMC Plant Biology 19: 1–13.

    Article  Google Scholar 

  • Ju, X.T., G.X. Xing, X.P. Chen, S.L. Zhang, L.J. Zhang, X.J. Liu, Z.L. Cui, B. Yin, P. Christie, Z.L. Zhu, and F.S. Zhang. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences 106: 3041–3046.

    Article  ADS  CAS  Google Scholar 

  • Li, F., S. Elsayed, Y. Hu, and U. Schmidhalter. 2020. Passive reflectance sensing using optimized two-and three-band spectral indices for quantifying the total nitrogen yield of maize. Computers and Electronics in Agriculture 173: 105403.

    Article  Google Scholar 

  • Luciano, A.C.S., M.C.A. Picoli, D.G. Duft, J.V. Rocha, M.R.L.V. Leal, and G.L. Maire. 2021. Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm. Computers and Electronics in Agriculture 184: 106063.

    Article  Google Scholar 

  • Malavolta, E., G.C. Vitti, and S.A. Oliveira. 1997. Assessment of plant nutritional status. 2ed. Piracicaba: POTAFOS, Brazil.

  • Mariano, E., J.M. Leite, M.X. Megda, L. Torres-Dorante, and P.C. Trivelin. 2015. Influence of nitrogen form supply on soil mineral nitrogen dynamics, nitrogen uptake, and productivity of sugarcane. Agronomy Journal 2: 641–650.

    Article  Google Scholar 

  • Marshak, A., Y. Knyazikhin, A.B. Davis, W.J. Wiscombe, and P. Pilewskie. 2000. Cloud-vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness. Geophysical Research Letters 27: 1695–1698.

    Article  ADS  Google Scholar 

  • Miao, Y., D.J. Mulla, G.W. Randall, J.A. Vetsch, and R. Vintila. 2009. Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precision Agriculture 10: 45–62.

    Article  Google Scholar 

  • Minaei, S., M. Soltanikazemi, H. Shafizadeh-Moghadam, and A. Mahdavian. 2022. Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: Application of random forest and support vector regression. Computers and Electronics in Agriculture 200: 107130.

    Article  Google Scholar 

  • Miphokasap, P., and W. Wannasiri. 2018. Estimations of Nitrogen Concentration in Sugarcane Using Hyperspectral Imagery. Sustainability 4: 1266–1282.

    Article  Google Scholar 

  • Miphokasap, P., K. Honda, C. Vaiphasa, M. Souris, and M. Nagai. 2012. Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy. Remote Sensing 4: 1651–1670.

    Article  ADS  Google Scholar 

  • Osco, L.P., R.A.P. Marques, P.D. Roberto, S.M.E. Akemi, I.N. Nobuhiro, M.E. Takashi, N. Estrabis, M. Souza, J.M. Junior, W. Gonçalves, J. Li, V. Liesenberg, and J. Eduardo Creste. 2019. Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery. Remote Sensing 11: 2925.

    Article  ADS  Google Scholar 

  • Picoli, M.C.A., P.G. Machado, D.G. Duft, F.V. Scarpare, S.T.R. Corrêa, T.A.D. Hernandes, and J.V. Rocha. 2019. Sugarcane drought detection through spectral indices derived modeling by remote-sensing techniques. Modeling Earth Systems and Environment 5: 1679–1688.

    Article  Google Scholar 

  • Pincelli-Souza, R.P., F.P. Bortolheiro, C.A. Carbonari, E.D. Velini, and M.D.A. Silva. 2020. Hormetic effect of glyphosate persists during the entire growth period and increases sugarcane yield. Pest Management Science 76: 2388–2394.

    Article  CAS  PubMed  Google Scholar 

  • Pôças, I., A. Calera, I. Campos, and M. Cunha. 2020. Remote sensing for estimating and mapping single and basal crop coefficientes: a review on spectral vegetation indices approaches. Agricultural Water Management 233: 106081.

    Article  Google Scholar 

  • Raij, B.V., H. Cantarella, J.A. Quaggio, and A.M.C. Furlani. 1997. Recommendations for cathem and fertilization for the state of São Paulo. Intituto Agronômico de Campinas, Campinas, SP, Brazil.

  • Ranjan, R., U.K. Chopra, R.N. Sahoo, A.K. Singh, and S. Pradhan. 2012. Assessment of plant nitrogen stress in wheat (Triticum aestivum L.) through hyperspectral indices. International Journal of Remote Sensing 33: 6342–6360.

    Article  ADS  Google Scholar 

  • Raun, W.R., J.B. Solie, G.V. Johnson, M.L. Stone, E.V. Lukina, W.E. Thomason, and J.S. Schepers. 2001. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal 93: 131–138.

    Article  Google Scholar 

  • Raun, W.R., J.B. Solie, G.V. Johnson, M.L. Stone, R.W. Mullen, K.W. Freeman, W.E. Thomason, and E.V. Lukina. 2002. Improving Nitrogen Use Efficiency in Cereal Grain Production with Optical Sensing and Variable Rate Application. Agronomy Journal 94: 815–820.

    Article  Google Scholar 

  • Rodrigues, M., E. Cezar, G.L.A.A. Santos, A.S. Reis, R.H. Furlanetto, R.B. Oliveira, R.C. D’Ávila, and M.R. Nanni. 2022. Estimating technological parameters and stem productivity of sugarcane treated with rock powder using a proximal spectroradiometer Vis-NIR-SWIR. Industrial Crops and Products 186: 115278.

    Article  Google Scholar 

  • Rodriguez, D., G.J. Fitzgerald, R. Belford, and L.K. Christensen. 2006. Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Australian Journal of Agricultural Research 57: 781–789.

    Article  CAS  Google Scholar 

  • Sanches, G.M., D.G. Duft, O.T. Kölln, A.C.D.S. Luciano, S.G.Q. Castro, F.M. Okuno, and H.C.J. Franco. 2018. The potential for RGB images obtained using unmanned aerial vehicle to assess and predict yield in sugarcane fields. International Journal of Remote Sensing 39: 5402–5414.

    Article  ADS  Google Scholar 

  • Santos, E.F., R.M.A. Donha, C.M. Magno, D. Araújo, J.L. Junior, and M.A. Camacho. 2013. Normal nutrient ranges in sugarcane by chm, dris and cnd methods and critical level by reduced normal distribution. Revista Brasileira De Ciencia Do Solo 37: 1651–1658.

    Article  Google Scholar 

  • Schlemmer, M., A. Gitelson, J. Schepers, R. Ferguson, Y. Peng, J. Shanahan, and D. Rundquist. 2013. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. International Journal of Applied Earth Observation and Geoinformation 25: 47–54.

    Article  ADS  Google Scholar 

  • Silva, C.A.A.C., P.R. Fiorio, R. Rizzo, R. Rossetto, A.C. Vitti, F.L.F. Dias, K.A. Oliveira, and M.B. Neto. 2023. Detection of nutritional stress in sugarcane by VIS-NIR-SWIR reflectance spectroscopy. Ciência Rural 53: e20220543.

    Article  CAS  Google Scholar 

  • Sims, D.A., and J.A. Gamon. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment 81: 337–354.

    Article  ADS  Google Scholar 

  • Veysi, S., A.A. Naseri, and S. Hamzeh. 2020. Relationship between field measurement of soil moisture in the effective depth of sugarcane root zone and extracted indices from spectral reflectance of optical/thermal bands of multispectral satellite images. Journal of the Indian Society of Remote Sensing 48: 1035–1044.

    Article  Google Scholar 

  • Vogelmann, J.E., B.N. Rock, and D.M. Moss. 1993. Red-edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing 14: 1563–1575.

    Article  ADS  Google Scholar 

  • Yang, Y., S. Gao, Y. Jiang, Z. Lin, J. Luo, M. Li, J. Guo, Y. Su, L. Xu, and Y. Que. 2019. The physiological and agronomic responses to nitrogen dosage in different sugarcane varieties. Frontiers in Plant Science 10: 406.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Yin, C., J. Lin, L. Ma, Z. Zhang, T. Hou, L. Zhang, and X. Ly. 2021. Study on the quantitative relationship among canopy hyperspectral reflectance, vegetation index and cotton leaf nitrogen content. Journal of the Indian Society of Remote Sensing 49: 1787–1799.

    Article  Google Scholar 

  • Zhao, Z., K. Verburg, and N. Huth. 2017. Modelling sugarcane nitrogen uptake patterns to inform design of controlled release fertiliser for synchrony of N supply and demand. Field Crops Research 213: 51–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by MJA, FPR. Data curation was contributed by MJA, BPPS. Formal analysis was contributed by MJA, BPPS. Funding acquisition was contributed by FPR, DJAM. Investigation was contributed by MJA, BPPS, FPR. Methodology was contributed by MJA, FPR. Project administration was contributed by MJA, FPR. Resources were contributed by FPR, DJAM. Supervision was contributed by MJA, FPR. Validation was contributed by MJA, SCAAC. Visualization was contributed by MJA, SCAAC, FPR. Writing—original draft, was contributed by MJA, BPPS, FPR. Writing—review and editing, was contributed by MJA, FPR, SCAAC.

Corresponding author

Correspondence to Carlos Augusto Alves Cardoso Silva.

Ethics declarations

Conflict of Interest

The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, J.A., Fiorio, P.R., Silva, C.A.A.C. et al. Application of Vegetative Indices for Leaf Nitrogen Estimation in Sugarcane Using Hyperspectral Data. Sugar Tech 26, 160–170 (2024). https://doi.org/10.1007/s12355-023-01329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-023-01329-1

Keywords

Navigation