Skip to main content
Log in

Physiology of Sucrose Productivity and Implications of Ripeners in Sugarcane

  • SI : Innovation for Sustainability of the Sugar Agro-Industry
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugarcane is grown in India in about 4.7 million hectares with a production of 348 million tonnes and sugar output of 32.34 million tonnes during the year 2017–2018. Although cane yield has doubled over the years, it is not so in the case of sugar recovery. Genetic and environmental factors influence sugarcane growth, sucrose accumulation as well as maturity processes. Sucrose in storage compartment of cane stalk is the ultimate balance between synthesis and internal consumption in simple terms; nevertheless, it is stored against a number of complex processes such as respiration loss, demand from growing shoot and root tissues and also the dormant lateral buds apart from pests, diseases and abiotic stress factors. Maturity or ripening in sugarcane is the culmination of diphasic physiological processes occurring in individual internodes. In the first stage of maturation, only about 50% of sucrose is accumulated. Additional sucrose accumulation occurs in the second phase of maturity and is so closely related to ripening. The response of sugarcane to proven ripeners varies with variety, rate of application, physiological stage of the crop and environmental factors before and after ripener application. Decline in recovery is primarily due to crushing of pre-mature canes and delayed harvest of over-mature canes. Sugar recovery is dependent on the juice quality and influenced by factors, viz. moisture stress, light, temperature and nutrient availability. There is wide scope for the use of chemical ripening agents, viz. Ethrel, Glyphosate, Fusilade Super and Gallant Super, which show differential varietal response across locations to either induce ripening or to synchronize ripening with the harvest schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • ADAMA. 2021. www.adama.com Accessed 10 Aug 2021.

  • Alexander, A.G. 1973. Sugarcane physiology: A comprehensive study of the Saccharum source-to-sink system. Amsterdam: Elsevier Scientific.

    Google Scholar 

  • Allison, J.C.S., H.T. Williams, and N.W. Pammenter. 1997. Effect of specific leaf nitrogen on photosynthesis of sugarcane. Annals of Applied Biology 63: 135–144.

    Article  Google Scholar 

  • Amaya, A., J.H. Cock, A. Hernandez, and J. Irvine. 1995. Bioligia. In El cultivo de la Canˇa en la zona azucarera de Colombia, ed. Casselett, C., J. Torres, and C. Isaacs, 31–62. Cali, Colombia: Cenicana.

  • Anon. 1976. Annual Report 34. Mauritius: Sugar Industry Research Institute.

  • Anon. 2010. Annual Report 2010–11. Coimbatore, India: ICAR-Sugarcane Breeding Institute.

  • Arceneaux, G. 1935. A study of sugarcane stalk age groups under Louisiana conditions. Proceedings of the International Society of Sugar Cane Technologists 5: 777–787.

    Google Scholar 

  • Asokan, S., and T.R. Rupa. 2003. Annual Report 2002–03. Coimbatore, India: ICAR-Sugarcane Breeding Institute.

  • Asokan, S. 2008. Annual Report 2007–08. Coimbatore, India: ICAR-Sugarcane Breeding Institute.

  • Bajpai, P.D., and R.C. Tripathi. 1971. Studies on accumulation of sucrose in some new promising varieties of sugarcane. Indian Sugar 21: 377–386.

    CAS  Google Scholar 

  • Barber, C.A. 1916. Studies in Indian sugarcanes No. 2. Sugarcane seedlings, including some correlations between morphological characters and sucrose in the juice. Memoirs of the Department of Agriculture in India Botanical Series 9: 103–199.

    Google Scholar 

  • Barber, C.A. 1918. Studies in Indian sugarcanes No. 3. The classifications of Indian canes with special reference to Saretha and Sunnabile group. Memoirs of the Department of Agriculture in India Botanical Series 9: 133–207.

    Google Scholar 

  • Batta, S.K., S. Kaur, and A.P.S. Mann. 2002. Sucrose accumulation and maturity behaviour in sugarcane is related to invertase activities under subtropical conditions. Sugarcane International Jan-Feb: 10–13.

  • Batta, S.K., and R. Singh. 1986. Sucrose metabolism in sugarcane grown under varying climatic conditions: Synthesis and storage of sucrose in relation to the activities of sucrose synthase, sucrose-phosphate synthase and invertase. Phytochemistry 25: 2431–2437.

    Article  CAS  Google Scholar 

  • Baxter, C.J., C.H. Foyer, S.A. Rolfe, and W.B. Quick. 2001. A comparison of carbohydrate composition and kinetic properties of sucrose phosphate synthase (SPS) in transgenic tobacco (Nicotiana tabacum) leaves expressing maize SPS protein with untransformed control. Annals of Applied Biology 138: 47–55.

    Article  CAS  Google Scholar 

  • Beauchamp, C.E. 1950. Effect of 2, 4-D on sugar content of sugarcane. Sugar Journal 13 (5): 57–69.

    Google Scholar 

  • Beruter, J., and F.M.E. Studer. 1997. The effect of girdling on carbohydrate partitioning in the growing apple fruit. Journal of Plant Physiology 151: 277–285.

    Article  CAS  Google Scholar 

  • Botha, F.C., and K.G. Black. 2000. Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane. Australian Journal of Plant Physiology 27: 81–85.

    CAS  Google Scholar 

  • Bull, T.A., and D.A. Tovey. 1974. Aspects of modelling sugar cane growth by computer simulation. Proceedings of the International Society of Sugar Cane Technologists 165: 1021–1032.

    Google Scholar 

  • Burstall, L., and P.M. Harries. 1983. The estimation of percentage light interception from leaf area index and percentage ground cover in potatoes. Journal of Agricultural Sciences 100: 241–244.

    Google Scholar 

  • Carson, D.L., and F.C. Botha. 2002. Genes expressed in sugarcane maturing internodal tissue. Plant Cell Reports 20: 1075–1081.

    Article  CAS  Google Scholar 

  • Casu, R.E., C.P.L. Grof, A.L. Rae, C.L. McIntyre, C.M. Dimmock, and J.M. Manners. 2003. Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Molecular Biology 52: 371–386.

    Article  CAS  PubMed  Google Scholar 

  • Casu, R.E., C.M. Dimmock, S.C. Chapman, C.P.L. Grof, C.L. McIntyre, G.D. Bonnett, and J.M. Manners. 2004. Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Molecular Biology 54: 503–517.

    Article  PubMed  Google Scholar 

  • Casu, R.E., A.L. Rae, J.M. Nielsen, J.M. Perroux, G.D. Bonnett, and J.M. Manners. 2015. Tissue-specific transcriptome analysis within the maturing sugarcane stalk reveals spatial regulation in the expression of cellulose synthase and sucrose transporter gene families. Plant Molecular Biology 89: 607–628.

    Article  CAS  PubMed  Google Scholar 

  • Chandra, A., R. Jain, R.K. Rai, and S. Solomon. 2011. Revisiting the source-sink paradigm in sugarcane. Current Science 100 (7): 978–980.

    Google Scholar 

  • Chandra, A., R. Jain, and S. Solomon. 2012. Complexities of invertases controlling sucrose accumulation and retention in sugarcane. Current Science 102: 857–866.

    CAS  Google Scholar 

  • Chourey, P.S., E.W. Taliercio, S.J. Carlson, and Y.L. Ruan. 1998. Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical one for cell wall integrity and the other for starch biosynthesis. Molecular Genomics and Genetics 259: 88–96.

    Article  CAS  Google Scholar 

  • Clowes, M.S.J. 1978. Early and late season chemical ripening of sugarcane. Proceedings of the South African Sugar Cane Technologists Association 52: 160–165.

    CAS  Google Scholar 

  • Clowes, M.S.J. 1980. Ripening activity of the glyphosate salts MON8000 and roundup. Proceedings of the International Society of Sugarcane Technologists 17: 676–693.

    Google Scholar 

  • Clowes, M.S.J., and N.G. Inman-Bamber. 1980. Effects of moisture regime, amount of nitrogen applied and variety on ripening response of sugarcane to glyphosates. Proceedings of the South African Sugar Cane Technologists Association 54 (1): 127–133.

    Google Scholar 

  • Das, G., and K.A. Prabhu. 1988. Hydrolytic enzymes of sugarcane: Properties of alkaline phosphatase. International Sugar Journal 90: 69–71.

    Google Scholar 

  • Das, P.K., A.K. Parida, N. Nayak, S.S. Mahapatra, and B.C. Jenna. 1997. Path-coefficient, regression and discriminant functions in sugarcane. Indian Sugar 47: 31–34.

    Google Scholar 

  • Dejardin, A., C. Rochat, S. Wuilleme, and J.P. Boutin. 1997. Contribution of sucrose synthase, ADP-glucose pyrophosphorylase and starch synthase to starch synthesis in developing pea seeds. Plant, Cell and Environment 20: 1421–1430.

    Article  CAS  Google Scholar 

  • Dong, Z., M.J. Canny, and M.E. McCully. 1994. A nitrogen-fixing endophyte of sugarcane stems. Plant Physiology 105: 1139–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dusky, J.A., M.S. Kang, and B. Glaz. 1986. Response of eight sugarcane varieties to glyphosine and glyphosate ripeners. Journal of Plant Growth Regulation 4: 225–235.

    Article  CAS  Google Scholar 

  • Dutoit, J.L. 1958. Sucrose formation and concentration in sugarcane. South African Sugarcane Journal 42: 205–213.

    Google Scholar 

  • Ebrahim, M.K., O. Zingheim, M.N. El-Shourbagy, P.H. Moore, and E.J. Komor. 1998. Growth and sugar storage in sugarcane grown at temperatures below and above optimum. Plant Physiology 153: 593–602.

    Article  CAS  Google Scholar 

  • FAO. 2021. http://www.fao.org/ Accessed 10 Aug 2021.

  • Fernandes, A.C., and G.T.A. Benda. 1986. Sugar storage in sugar cane stalks. Sugar Cane 2: 10–14.

    Google Scholar 

  • Gajera, G.M., H.S. Patel, M.P. Patel, P.L. Nair, and N.J. Mehta. 1991. Correlation studies in sugarcane. Indian Sugar 15: 875–876.

    Google Scholar 

  • Geigenberger, P., and M. Stitt. 1991. Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant systems. Planta 189: 329–339.

    Article  Google Scholar 

  • Glasziou, K.T., and K.R. Gayler. 1972. Storage of sugars in stalks of sugarcane. Botanical Review 38: 471–488.

    Article  Google Scholar 

  • Glover, J. 1973. The dark respiration of sugar-cane and the loss of photosynthate during the growth of a crop. Annals of Botany 37: 845–852.

    Article  Google Scholar 

  • Grivet, L., and P. Arruda. 2002. Sugarcane genomics: Depicting the complex genome of an important tropical crop. Current Opinion in Plant Biology 5: 122–127.

    Article  CAS  PubMed  Google Scholar 

  • Grof, C.P.L., and J.A. Campbell. 2001. Sugarcane sucrose metabolism: Scope for molecular manipulation. Australian Journal of Plant Physiology 28: 1–12.

    CAS  Google Scholar 

  • Grof, C.P.L., D.P. Knight, S.D. McNeil, J.E. Lunn, and J.A. Campbell. 1998. A modified assay method shows leaf sucrose-phosphate synthase activity is correlated with leaf sucrose content across a range of sugarcane varieties. Australian Journal of Plant Physiology 25: 499–502.

    CAS  Google Scholar 

  • Gupta, A.P. 1977. Measures to increase sugar productivity in India. Indian Sugar 27: 193–196.

    Google Scholar 

  • Hartt, C.E., and G.O. Burr. 1965. Factors affecting photosynthesis in sugarcane. Proceedings of the International Society of Sugar Cane Technologists 12: 590–609.

    Google Scholar 

  • Hartt, C.E., H.P. Kortschak, A.J. Forbes, and G.O. Burr. 1963. Translocation of C14 in sugarcane. Plant Physiology 38: 305–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatch, M.D. 1964. Sugar accumulation by sugarcane storage tissue: The role of sucrose phosphate. Biochemistry Journal 93: 521–526.

    Article  CAS  Google Scholar 

  • Hatch, M.D., and K.T. Glasziou. 1963. Sugar accumulation cycle in sugarcane. II. Relationship of invertase activity to sugar content and growth rate in storage tissue of plants grown in controlled environments. Plant Physiology 38: 344–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauch, S., and E. Magel. 1998. Extractable activities and protein content of sucrose phosphate synthase, sucrose synthase and neutral invertase in trunk tissues of Robinia pseudoacacia L. are related to cambial wood production and heart wood formation. Planta 207: 266–274.

    Article  CAS  Google Scholar 

  • Hawker, J.S. 1965. The sugar content of cell walls and intercellular spaces in sugarcane stems and its relation to sugar transport. Australian Journal of Biological Sciences 18: 959–969.

    Article  CAS  Google Scholar 

  • Hawker, J.S., C.F. Jenner, and C.M. Niemietz. 1991. Sugar metabolism and compartmentation. Australian Journal of Plant Physiology 18: 227–237.

    CAS  Google Scholar 

  • Hsiao, T.C., and K.J. Bradford. 1983. Physiological consequences of cellular water deficits. In Limitations to efficient water use in crop production, ed. H.M. Taylor, W.R. Jordan, and T.R. Sinclair, 227–265. Madison: American Society of Agronomy.

    Google Scholar 

  • Huber, S.C. 1989. Biochemical mechanism for regulation of sucrose accumulation in leaves during photosynthesis. Plant Physiology 91: 656–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber, J.L.A., and S.C. Huber. 1992. Site-specific serine phosphorylation of spinach leaf sucrose-phosphate synthase. Biochemistry Journal 283: 877–882.

    Article  CAS  Google Scholar 

  • Huber, S.C., and J.L. Huber. 1996. Role and regulation of sucrose phosphate synthase in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 47: 431–444.

    Article  CAS  PubMed  Google Scholar 

  • Huber, S., and D. Israel. 1982. Biochemical basis for partitioning of photosynthetically fixed carbon between starch and sucrose in soybean (Glycine max Merr.) leaves. Plant Physiology 69: 691–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber, S.C., T. Hamborg Nielsen, J.L. Huber, and D.M. Pharr. 1989. Variation among species in light activation of sucrose-phosphate synthase. Plant Cell Physiology 30: 277–285.

    Article  CAS  Google Scholar 

  • Humbert, R.P. 1968. The growing of sugarcane. Amsterdam: Elsevier.

    Google Scholar 

  • Irvine, J.E. 1975. Relations of photosynthetic rates and leaf canopy characters to sugarcane yield. Crop Science 15: 671–676.

    Article  Google Scholar 

  • Isla, M.I., G. Salerno, H. Pontis, M.A. Vattuone, and A.R. Sampietro. 1995. Purification and properties of soluble acid invertase from Oryza sativa. Phytochemistry 38: 321–325.

    Article  CAS  Google Scholar 

  • Jacobsen, K.R., D.G. Fisher, A. Maretzki, and P.H. Moore. 1992. Developmental changes in the anatomy of the sugarcane stem in relation to phloem unloading and sucrose storage. Botanica Acta 105: 70–80.

    Article  Google Scholar 

  • Julius, B.T., K.A. Leach, T.M. Tran, R.A. Mertz, and D.M. Braun. 2017. Sugar transporters in plants: New insights and discoveries. Plant and Cell Physiology 58 (9): 1442–1460.

    Article  CAS  PubMed  Google Scholar 

  • Kadam, J.R., S.S. Shinde, and B.M. Ranaware. 1983. Comparative studies of different varieties of sugarcane. Maharashtra Sugar 8 (9): 49–54.

    Google Scholar 

  • Kanwar, R.S., and J.K. Kapur. 1976. Post-harvest inversion rate in different cane varieties. International Sugar Journal 781: 358–359.

    Google Scholar 

  • Kapur, J.K., and R.S. Kanwar. 1981. Post-harvest deterioration in different sugarcane varieties. In: Proceedings of the 45th annual convention of the sugar technologists’ association of India.

  • Kingston, G., A.P. Hurney, and P. Kwint. 1991. Chemical ripening of sugarcane to improve early season CCS. In: Proceedings of the Australian society of sugarcane technologists pp. 110–115.

  • Koch, K.E. 1996. Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47: 509–540.

    Article  CAS  PubMed  Google Scholar 

  • Koch, K. 2004. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7: 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Kortschak, H.P., C.E. Hartt, and G.O. Burr. 1965. Carbon dioxide fixation in sugarcane leaves. Plant Physiology 40 (2): 209–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause, K., and M. Stitt. 1992. Sucrose-6-phosphate levels in spinach leaves and their effects on sucrose phosphate synthase. Phytochemistry 31: 1143–1146.

    Article  CAS  Google Scholar 

  • Krishnan, R. 1947. Effect of different number of tillers on the quality of primary (mother) shoot in sugarcane. Current Science 16: 200.

    Google Scholar 

  • Kumar, A., and H.P. Pande. 1988. Effect of growth-regulators on sugars in sugarcane juice. Indian Journal of Agricultural Sciences 58 (4): 319–321.

    CAS  Google Scholar 

  • Kvet, J., J.P. Ondok, and P.G. Jarvis. 1971. Methods of growth analysis. In Plant photosynthetic production, manual of methods, ed. Z. Sestak, J. Catsky, and P.G. Jarvis, 343–391. The Hague: NV Publishers.

    Google Scholar 

  • Lakshmikantham, M. 1973. Technology in Sugarcane Growing. Hyderabad: Andhra Pradesh Agricultural University.

    Google Scholar 

  • Lalonde, S., M. Tegeder, M. Throne-Holst, W.B. Frommer, and J.W. Patrick. 2003. Phloem loading and unloading of sugar and amino acids. Plant, Cell and Environment 26: 37–56.

    Article  CAS  Google Scholar 

  • Legendre, B.L., and C.K. Finger. 1988. Response of sugarcane varieties to the chemical ripener glyphosate. Sugar Journal 51 (2): 16–19.

    Google Scholar 

  • Leloir, L.F., and C.E. Cardini. 1955. Biosynthesis of sucrose phosphate. Journal of Biological Chemistry 214: 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. 2004. Beneficial effects of ethephon application on sugarcane under sub-tropical climate of China. Sugar Tech 6 (4): 235–240.

    Article  CAS  Google Scholar 

  • Liang, H., and Y. Li. 1995. Effects of different concentration of ethephon on economic characters in sugarcane. Journal of Guangxi Agricultural University (china) 14 (2): 101–106.

    Google Scholar 

  • Lingle, S.E. 1997. Seasonal internode development and sugar metabolism in sugarcane. Crop Science 37: 1222–1227.

    Article  CAS  Google Scholar 

  • Lingle, S.E. 1999. Sugar metabolism during growth and development in sugarcane internodes. Crop Science 39: 480–486.

    Article  CAS  Google Scholar 

  • Lunn, J.E., and R.T. Furbank. 1999. Sucrose biosynthesis in C4 plants. New Phytologist 143: 221–237.

    Article  CAS  Google Scholar 

  • Madan, V.K., K. Singh, H.P. Pande, and Y.R. Saxena. 1981. Foliar enzymes of sugarcane seasonal variations of invertases. International Sugar Journal 83: 163.

    CAS  Google Scholar 

  • Martin, F.A., B.L. Legendre, G.M. Dill, G.J. Dimarco, and R.J. Steib. 1981. Chemical ripening of Louisiana sugarcane. Sugar Journal 4 (10): 20–22.

    Google Scholar 

  • McCormick, A.J., M.D. Cramer, and D.A. Watt. 2006. Sink strength regulates photosynthesis in sugarcane. New Phytologist 171: 759–770.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, A.J., M.D. Cramer, and D.A. Watt. 2008a. Changes in photosynthetic rates and gene expression of leaves during a source–sink perturbation in sugarcane. Annals of Botany 101: 89–102.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, A.J., M.D. Cramer, and D.A. Watt. 2008b. Culm sucrose accumulation promotes physiological decline of mature leaves in ripening sugarcane. Field Crops Research 108: 250–258.

    Article  Google Scholar 

  • McCormick, A.J., M.D. Cramer, and D.A. Watt. 2008c. Differential expression of genes in the leaves of sugarcane in response to sugar accumulation. Tropical Plant Biology 1: 142–148.

    Article  CAS  Google Scholar 

  • McCormick, A.J., M.D. Cramer, and D.A. Watt. 2008d. Regulation of photosynthesis by sugars in sugarcane leaves. Journal of Plant Physiology 165 (17): 1817–1829.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, A.J., D.A. Watt, and M.D. Cramer. 2009. Supply and demand: Sink regulation of sugar accumulation in sugarcane. Journal of Experimental Botany 60: 357–364.

    Article  CAS  PubMed  Google Scholar 

  • Meinzer, F.C., and P.H. Moore. 1988. Effects of apoplastic solutes on water potential in elongating sugarcane leaves. Plant Physiology 86: 873–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanraj, K., G. Hemaprabha, and S. Vasantha. 2021. Biomass yield, dry matter partitioning and physiology of commercial and Erianthus introgressed sugarcane clones under contrasting water regimes. Agricultural Water Management 255: 107035.

    Article  Google Scholar 

  • Moore, P.H. 1995. Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Australian Journal of Plant Physiology 22: 661–679.

    CAS  Google Scholar 

  • Moore, P.H., and D.J. Cosgrove. 1991. Developmental changes in cell and tissue water relations parameters in storage parenchyma of sugarcane. Plant Physiology 96: 794–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan, T., P. Jackson, L. McDonald, and J. Holtum. 2007. Chemical ripeners increase early season sugar content in a range of sugarcane varieties. Australian Journal of Agricultural Research 58: 233–241.

    Article  CAS  Google Scholar 

  • Morris, D.A., and E.D. Arthur. 1984. Invertase and auxin-induced elongation in internodal segments of Phaseolus vulgaris. Phytochemistry 23: 2163–2167.

    Article  CAS  Google Scholar 

  • Nakai, T., N. Tonouchi, T. Konishi, Y. Kojima, T. Tsuchida, F. Yoshinaga, F. Sakai, and T. Hayashi. 1999. Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum. Proceedings of the National Academy of Sciences USA 96: 14–18.

    Article  CAS  Google Scholar 

  • Nguyen, C.T., L.H. Dang, D.T. Nguyen, K.P. Tran, B.L. Giang, and N.Q. Tran. 2019. Effect of GA3 and Gly plant growth regulators on productivity and sugar content of sugarcane. Agriculture 9 (7): 136.

    Article  CAS  Google Scholar 

  • Nguyen-Quoc, B., and C.H. Foyer. 2001. A role for ‘futile cycles’ involving invertase and sucrose synthase metabolism of tomato fruit. Journal of Experimental Botany 52: 881–889.

    Article  CAS  PubMed  Google Scholar 

  • Nickell, L.G. 1984. Sucrose increases with bioregulators. American Chemical Society Symposium Series 257 (1): 101–112.

    Article  CAS  Google Scholar 

  • Nickell, L.G. 1988. Plant growth regulator use in cane and sugar production. Sugar Journal 50 (11): 7–11.

    Google Scholar 

  • Nickell, L.G. 1987. Plant growth regulator use in cane and sugar production. In: Proceedings of the plant growth regulator society of America pp. 423–437.

  • Osgood, R.V., P.H. Moore, and H.S. Ginoza. 1981. Differential dry matter partitioning in sugarcane cultivars treated with glyphosate. Proceedings of the 8th Annual Meeting of Plant Growth Regulator Society of America 97–98.

  • Pan, Y.Q., H.L. Luo, and Y.R. Li. 2009. Soluble acid invertase and sucrose phosphate synthase: Key enzymes in regulating sucrose accumulation in sugarcane stalk. Sugar Tech 11 (1): 28–33.

    Article  CAS  Google Scholar 

  • Panje, R.R. 1965. How to multiply sugarcane. Indian Sugarcane 15: 1–4.

    Google Scholar 

  • Park, S.E., M. Robertson, and N.G. Inman-Bamber. 2005. Decline in the growth of a sugarcane crop with age under high input conditions. Field Crops Research 92 (2–3): 305–320.

    Article  Google Scholar 

  • Pontis, H.G. 1977. Riddle of sucrose. In Plant biochemistry II: International reviews in biochemistry, ed. D.H. Northcote, 79–117. Baltimore: University Park Press.

    Google Scholar 

  • Prathima, P.T., G.S. Suresha, and A. Selvi. 2011. Expression profiling of genes involved in sucrose metabolism from different Saccharum spp. and commercial sugarcane hybrids. Journal of Sugarcane Research 1 (2): 35–42.

    Google Scholar 

  • Quick, W.P., and A.A. Schaffer. 1996. Sucrose metabolism in sources and sinks. In Photoassimilate distribution in plants and crops: Source-sink relationships, ed. E. Zamski and A.A. Schaffer, 115–156. New York: Marcel Dekker.

    Google Scholar 

  • Rae, A.L., P.L.C. Grof, R.E. Casu, and G.D. Bonnett. 2005. Sucrose accumulation in the sugarcane stem: Pathways and control points for transport and compartmentation. Field Crops Research 92: 159–168.

    Article  Google Scholar 

  • Raheja, P.C. 1951. Investigation on growth and development in sugarcane. I: Analysis of sugarcane yields, II: Relative influence of season, irrigation intervals, methods of planting and nitrogen doses on yield and quality of cane. Indian Journal of Agricultural Sciences 21: 203–214.

    Google Scholar 

  • Ramanujam, T., and S. Venkataramana. 1999. Radiation interception and utilization at different growth stages of sugarcane and their influence on yield. Indian Journal of Plant Physiology 4 (2): 85–89.

    Google Scholar 

  • Robertson, M.J., R.C. Muchow, and R.A. Donaldson. 1999. Estimating the risk associated with drying-off strategies for irrigated sugarcane before harvest. Australian Journal of Agricultural Research 50: 65–77.

    Article  Google Scholar 

  • Robinson-Beers, K., and R.F. Evert. 1991. Ultrastructure of and plasmodesmatal frequency in mature leaves of sugarcane. Planta 184: 291–306.

    CAS  PubMed  Google Scholar 

  • Rodrigues, H.J. 1928. Relation between high sucrose in cane and suckering. Plant and Sugar Manufacturing 80: 101–102.

    Google Scholar 

  • Rohwer, J., and F.C. Botha. 2001. Analysis of sucrose accumulation in the sugarcane culm on the basis of in vitro kinetic data. Biochemistry Journal 358: 437.

    Article  CAS  Google Scholar 

  • Rostron, H. 1977. Prolonged chemical ripening of sugarcane following multiple applications of ethrel. Proceedings of the International Society of Sugar Cane Technologists 16: 1743–1753.

    Google Scholar 

  • Rostron, H. 1985. Chemical ripening of sugarcane with fusilade Super. Proceedings of the South African Sugar Technologists Association 59: 168–175.

    Google Scholar 

  • Rostron, H. 1974. Some effects of environment, age and growth regulating compounds on the growth, yield and quality of sugarcane in southern Africa. PhD Thesis. Pietermarizburg, South Africa: University of Natal.

  • Rostron, H. 1975. An assessment of chemical ripening of sugarcane in South Africa and Swaziland. In: Proceedings of The South African sugar technologists association Jun-Jul: 160–163.

  • Rupa, T.R. 2013. Post-harvest deterioration in sugarcane. In Improving sugarcane productivity in Tamil Nadu & Puducherry: Technological interventions, ed. D.P. Prathap and N.V. Nair, 260. ICAR-Sugarcane Breeding Institute: Coimbatore.

    Google Scholar 

  • Sacher, J.A., M.D. Hatch, and K.T. Glasziou. 1963. Sugar accumulation cycle in sugarcane. III. Physical and metabolic aspects in immature storage tissues. Plant Physiology 38: 348–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salerno, G.L., and H.G. Pontis. 1978. Sucrose phosphate synthase separation from sucrose synthase and study of its properties. Planta 142: 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Sanjeevi, P.S.S. 1987. Role of variety CoC 671 in changing sugar recovery pattern in Tamil Nadu. In Platinum Jubilee Souvenir of ICAR-SBI, 130–134. Coimbatore, India: ICAR-Sugarcane Breeding Institute.

    Google Scholar 

  • SASRI. 2021. https://sasri.org.za Accessed 10 Aug 2021.

  • Schafer, W.E., J.M. Rohwer, and F.C. Botha. 2004. A kinetic study of sugarcane sucrose synthase. European Journal of Biochemistry 271: 3971–3977.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer, A.A. 1986. Invertases in young mature leaves of Citrus sinensis. Phytochemistry 25: 2275–2277.

    Article  CAS  Google Scholar 

  • Shahzad, S., S. Shokat, N. Fiaz, and A. Hameed. 2017. Impact of yield and quality-related traits of sugarcane on sugar recovery. Journal of Crop Science and Biotechnology 20 (1): 1–7.

    Article  Google Scholar 

  • Sharma, K.P., and S.K. Batta. 1994. Post-harvest losses during staling. In: National seminar on improvement in sugarcane quality for increasing sugar production. Lucknow, India: ICAR-Indian Institute of Sugarcane Research.

  • Shinde, B.G., D.B. Niphade, and D.G. Hapase. 1985. Post-harvest deterioration of sugarcane varieties Co 740 and Co 7219 during different months of cane crushing season. Maharashtra Sugar 10 (12): 29–40.

    Google Scholar 

  • SietzzLang, K.A. 1968. Invertase activity and cell growth in lentil epicotyls. Plant Physiology 43: 1075–1082.

    Article  Google Scholar 

  • Singh, S., and A.Q. Khan. 1995. Selection indices and path analysis for cane yield. Sugarcane 3: 9–11.

    Google Scholar 

  • Singh, I., and S. Solomon. 2003. Post-harvest quality loss of sugarcane genotypes under sub-tropical climate: Deterioration of whole stalk and billets. Sugar Tech 5 (4): 285–288.

    Article  Google Scholar 

  • Slabnik, E., R.B. Frydman, and C.E. Cardini. 1968. Some properties of potato tuber UDPG:D-fructose-2-glucosyltransferase (EC 2.4.1.14) and UDPG:D-fructose-6-phosphate-2-glucosyltransferase (EC 2.4.1.13). Plant Physiology 43: 1063–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeekens, S. 2000. Sugar induced signal transduction in plants. Annual Review of Plant Physiology and Plant Molecular Biology 51: 49–81.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, S., and Y.R. Li. 2004. Chemical ripening of sugarcane: Global progress and recent developments in China. Sugar Tech 6: 241–249.

    Article  CAS  Google Scholar 

  • Solomon, S., R. Banerji, A.K. Shrivastava, P. Singh, I. Singh, M. Verma, C.P. Prajapathi, and S. Anita. 2006. Post-harvest deterioration of sugarcane and chemical methods to minimize sucrose losses. Sugar Tech 8 (1): 74–78.

    Article  CAS  Google Scholar 

  • Solomon, S., H.N. Shahi, I. Singh, and V.K. Madan. 1999. Dynamics of post-harvest losses in sugarcane during late crushing period. In: Proceedings of the international society of sugar cane technologists 157–165.

  • Srinivasan, T.R., M.R. Iruthayaraj, and Y.B. Morachan. 1973. Quality of sugarcane influenced by age of tillers. Indian Sugar 131–134.

  • Steudle, E., U. Zimmermann, and J. Zillikens. 1982. Effect of cell turgor on hydraulic conductivity and elastic modulus of elodea leaf cells. Planta 154: 371–380.

    Article  CAS  PubMed  Google Scholar 

  • Stitt, M., and W.P. Quick. 1989. Photosynthetic carbon partitioning, its regulation and possibilities for manipulation. Physiologia Plantarum 77: 633–641.

    Article  CAS  Google Scholar 

  • Stitt, M., S.C. Huber, and P. Kerr. 1987. Control of photosynthetic sucrose formation. In The biochemistry of plant photosynthesis, ed. M.D. Hatch and N.K. Boardman, 327–409. San Diego: Academic Press.

    Google Scholar 

  • Su, L.Y., A.D. Cruz, P.H. Moore, and A. Maretzki. 1992. The relationship of glyphosate treatment to sugar metabolism in sugarcane: New physiological insights. Journal of Plant Physiology 140: 168–173.

    Article  CAS  Google Scholar 

  • Suman, A., S. Solomon, D.V. Yadav, A. Gaur, and M. Singh. 2000. Post-harvest loss in sugarcane quality due to endophytic microorganisms. Sugar Tech 2 (4): 21–25.

    Article  Google Scholar 

  • Sun, J., T. Loboda, S.S. Sung, and C.C. Black. 1992. Sucrose synthase in wild tomato, Lycopersicon chmielewskii and tomato fruit sink strength. Plant Physiology 98: 1163–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suresha, G.S., J. Prasath, M. Naveenarani, C. Appunu, S. Vasantha, and K. Hari. 2017. Assessing the effect of soluble acid invertase activity in post-harvest sugarcane under tropical conditions. Journal of Sugarcane Research 7 (2): 93–99.

    Google Scholar 

  • Thangavelu, S., and K. Chiranjivi Rao. 2004. Determination of invert ratio in juice to study the maturity trend of sugarcane clones and its relationship with other quality characters. Sugar Tech 6: 95–98.

    Article  CAS  Google Scholar 

  • Uppal, S.K., and S. Sharma. 1999. Relative performance of sugarcane genotypes to post harvest inversions in subtropical region. Indian Sugar 9 (5): 345–348.

    Google Scholar 

  • Van der Merwe, M.J. 2005. Influence of hexose-phosphates and carbon cycling on sucrose accumulation in sugarcane spp. Master’s thesis. South Africa: University of Stellenbosch.

  • Van Dillewijn, C. 1952. Botany of sugarcane. Waltham: Chronica Botanica Co.

    Google Scholar 

  • Van Heerden, P.D.R., A. Robin, D.A. Donaldson, and A.S. Watt. 2010. Biomass accumulation in sugarcane: Unravelling the factors underpinning reduced growth phenomena. Journal of Experimental Botany 61 (11): 2877–2887.

    Article  PubMed  CAS  Google Scholar 

  • Vasantha, S., R. Gomathi, and C. Brindha. 2017. Growth and nutrient composition of sugarcane genotypes subjected to salinity and drought stresses. Communications in Soil Science and Plant Analysis 48 (9): 989–998.

    Article  CAS  Google Scholar 

  • Vasantha, S., S. Venkataramana, and R. Arun Kumar. 2019. Sucrose synthesis and accumulation in contrasting commercial hybrids of sugarcane. Journal of Sugarcane Research 9 (1): 45–54.

    Google Scholar 

  • Venkataramana, S., K.M. Naidu, and S. Singh. 1991. Invertases and growth factors dependent sucrose accumulation in sugarcane. Plant Science 74: 65–72.

    Article  CAS  Google Scholar 

  • Verma, P.S., and Shripal, and N.K. Karma. 1999. Genetic variability and correlation studies in sugarcane. Indian Sugar 49: 125–128.

    Google Scholar 

  • Verma, A.K., S.K. Upadhyay, P.C. Verma, S. Solomon, and S.B. Singh. 2011. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars. Plant Biology 13: 325–332.

    Article  CAS  PubMed  Google Scholar 

  • Vorster, D.J., and F.C. Botha. 1998. Partial purification and characterization of sugarcane neutral invertase. Phytochemistry 49: 651–655.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., S. Nayak, K. Koch, and R. Ming. 2013. Carbon partitioning in sugarcane (Saccharum species). Frontiers in Plant Science 4: 201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Welbaum, G.E., and F.C. Meinzer. 1990. Compartmentation of solutes and water in developing sugarcane stalk tissue. Plant Physiology 93: 1147–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker, A., and F.C. Botha. 1997. Carbon partitioning during sucrose accumulation in sugarcane internodal tissue. Plant Physiology 115: 1651–1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter, H., and S.C. Huber. 2000. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Critical Reviews in Plant Science 19: 31–67.

    Article  CAS  Google Scholar 

  • Wu, L., and R.G. Birch. 2007. Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnology Journal 5: 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Yao, R.L., Y.R. Li, G.R. Zhang, and L.T. Yang. 2002. Endogenous hormone levels at technical maturity stage of sugarcane. Sugar Tech 4: 14–18.

    Article  Google Scholar 

  • Young, H.E. 1963. The deterioration of burnt standing cane and burnt cut cane. Proceedings of the International Society of Sugar Cane Technologists 11: 307–311.

    Google Scholar 

  • Zhang, D.P., Y.M. Lu, Y.Z. Wang, C.Q. Duan, and H.Y. Yan. 2001. Acid invertase is predominantly localized to cell walls of both the practically symplastically isolated sieve elements/companion cell complex and parenchyma cells in developing apple fruits. Plant, Cell and Environment 24: 691–702.

    Article  CAS  Google Scholar 

  • Zhu, Y.J., E. Komor, and P.H. Moore. 1997. Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase. Plant Physiology 115: 609–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y.J., H.H. Albert, and P.H. Moore. 2000. Differential expression of soluble acid invertase genes in the shoots of high-sucrose and low-sucrose species of Saccharum and their hybrids. Australian Journal of Plant Physiology 27: 193–199.

    CAS  Google Scholar 

  • Zhuang, W.J. 1990. Studies on anatomy and physiology of sugarcane stem. II. A comparative anatomy of stem tissues of different species. Journal of Fujian Agricultural College 19: 155–162.

    Google Scholar 

  • Zrenner, R.M., L. Salanocibat, and Willmitzer, and Sonnewald. 1995. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant Journal 7: 97–107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, ICAR-Sugarcane Breeding Institute, Coimbatore, for providing the facilities and support for carrying out experiments to investigate the physiology of sucrose accumulation, which has culminated in this review article.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vasantha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasantha, S., Kumar, R.A., Tayade, A.S. et al. Physiology of Sucrose Productivity and Implications of Ripeners in Sugarcane. Sugar Tech 24, 715–731 (2022). https://doi.org/10.1007/s12355-021-01062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-021-01062-7

Keywords

Navigation