Skip to main content
Log in

Return window decision for modular mass customization products in a two-echelon returnable supply chain

  • Review
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This paper considers a two-echelon returnable supply chain in which a manufacturer sells modular mass customization (MC) products via a retailer to rapidly satisfy the individual needs of consumers. The retailer offers consumers full refund when the unsuitable MC products are returned within a certain return window, and meanwhile the manufacturer provides the retailer with two return polices: no return and full return with partial or full refund. We explore how the manufacturer’s modular design and return policy affect the retailer’s optimal return window. With a wholesale price contract, we also compare the return window and consumer welfare between different supply chain systems. To the best of our knowledge, this is the first paper to study the return window for customized products. Findings show that as the modularity level increases, the return window tends towards the upper bound, which implies that modular design enables MC firms to lengthen return window. Compared to the centralized system, the decentralized system can offer a longer return window, but it fails in generating greater consumer welfare due to high retail price and low modularity level. This suggests that the resale channel may be better for the speculative consumers who just want to experience the customized products, whereas the direct sales channel may be better for the personalized consumers who seek better customized services. We also extend the model to the retailer’s partial refund policy to check the robustness, and apply a two-part tariff contract to coordinate the decentralized system. Numerical experiments verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. See https://www.nike.com/nike-by-you.

  2. See https://www.apple.com/hk/shop/studio.

  3. See https://www.amazon.com/stores/madeforyou/madeforyou/page/E853E0F0-6F79-442D-B7E8-3A0E0531FAF2.

  4. See https://www.nike.com/help/a/returns-policy.

  5. See https://www.apple.com/shop/help/returns_refund.

  6. Amazon return policy is provided as follow. https://www.amazon.com/gp/help/customer/display.html/?nodeId=GKM69DUUYKQWKWX7&ref_=hp_901888/_c_About-Our-Returns-Policies.

References

  • Asadi N, Jackson M, Fundin A (2019) Implications of realizing mix flexibility in assembly systems for product modularity-A case study. J Manuf Syst 52:13–22

    Article  Google Scholar 

  • Chang S-Y, Yeh T-Y (2013a) Optimal order quantity and product modularity for a two-echelon returnable supply chain. Int J Prod Res 51(17):5210–5220

    Article  Google Scholar 

  • Chang S-Y, Yeh T-Y (2013b) A two-echelon supply chain of a returnable product with fuzzy demand. Appl Math Model 37(6):4305–4315

    Article  Google Scholar 

  • Choi T-M (2013) Optimal return service charging policy for a fashion mass customization program. Service Sci 5(1):56–68

    Article  Google Scholar 

  • Choi T-M, Liu N, Ren S, Hui C-L (2013) No refund or full refund: when should a fashion brand offer full refund consumer return service for mass customization products? Math Probl Eng 2013:561846

    Article  Google Scholar 

  • Difrancesco RM, Huchzermeier A, Schröder D (2018) Optimizing the return window for online fashion retailers with closed-loop refurbishment. Omega 78:205–221

    Article  Google Scholar 

  • Duray R (2002) Mass customization origins: mass or custom manufacturing? Int J Oper Prod Manag 22(3):314–328

    Article  Google Scholar 

  • Ertekin N, Agrawal A (2021) How does a return period policy change affect multichannel retailer profitability? Manuf Serv Oper Manag 23(1):210–229

    Article  Google Scholar 

  • Esenduran G, Letizia P, Ovchinnikov A (2022) Customization and returns. Manag Sci 68(6):4517–4526

    Article  Google Scholar 

  • Guo S, Liu N (2020) Influences of supply chain finance on the mass customization program: risk attitudes and cash flow shortage. Int Trans Oper Res 27(5):2396–2421

    Article  Google Scholar 

  • Guo S, Choi T-M, Shen B, Jung S (2020) Coordination and enhancement schemes for quick response mass customization supply chains with consumer returns and salvage value considerations. IEEE Trans Syst Man Cybern Syst 50(2):673–685

    Article  Google Scholar 

  • Hao C, Yang L (2023) Resale or agency sale? Equilibrium analysis on the role of live streaming selling. Eur J Oper Res 307(3):1117–1134

    Article  Google Scholar 

  • Jost P-J, Süsser T (2020) Company-customer interaction in mass customization. Int J Prod Econ 220:107454

    Article  Google Scholar 

  • Kabul MO, Parlaktürk AK (2019) The value of commitments when selling to strategic consumers: a supply chain perspective. Manag Sci 65(10):4754–4770

    Article  Google Scholar 

  • Kim K, Chhajed D (2000) Commonality in product design: cost saving, valuation change and cannibalization. Eur J Oper Res 125(3):602–621

    Article  Google Scholar 

  • Konstantaras I, Skouri K, Papachristos S (2011) Optimal pricing, return and modular design policy for build-to-order (BTO) products in a two parties supply chain system. IMA J Manag Math 22(1):1–12

    Google Scholar 

  • Kumar A (2005) Mass customization: metrics and modularity. Int J Flex Manuf Syst 16(4):287–311

    Article  Google Scholar 

  • Li Q (2018) The optimal multi-period modular design with fairness concerns. Int J Prod Econ 206:233–249

    Article  Google Scholar 

  • Li J, Liu C, Xiao W (2016) Modularity, lead time and return policy for supply chain in mass customization system. Int J Comput Intell Syst 9(6):1133–1153

    Article  Google Scholar 

  • Liu N, Choi T-M, Yuen C-WM, Ng F (2012) Optimal pricing, modularity, and return policy under mass customization. IEEE Trans Syst Man Cybern Part A Syst Hum 42(3):604–614

    Article  Google Scholar 

  • Liu J, Sun X, Liu Y (2021) Products pricing and return strategies for the dual channel retailers. Oper Res Int J 22(4):3841–3867

    Article  Google Scholar 

  • Lv J, Liu X (2022) The impact of information overload of e-commerce platform on consumer return intention: considering the moderating role of perceived environmental effectiveness. Int J Environ Res Public Health 19(13):8060

    Article  Google Scholar 

  • Ma B, Di C, Hsiao L (2020) Return window decision in a distribution channel. Prod Oper Manag 29(9):2121–2137

    Article  Google Scholar 

  • Mcwilliams B (2012) Money-back guarantees: helping the low-quality retailer. Manage Sci 58(8):1521–1524

    Article  Google Scholar 

  • Mikkola JH (2007) Management of product architecture modularity for mass customization: modeling and theoretical considerations. IEEE Trans Eng Manag 54(1):57–69

    Article  Google Scholar 

  • Mukhopadhyay SK, Setoputro R (2005) Optimal return policy and modular design for build-to-order products. J Oper Manag 23(5):496–506

    Article  Google Scholar 

  • Pi Z, Fang W, Zhao Q, Zhang B (2022) On the introduction of return window to supply chains with online channel. Comput Ind Eng 172:108623

    Article  Google Scholar 

  • Shang G, Ferguson ME, Galbreth MR (2019) Where should I focus my return reduction efforts? Empirical guidance for retailers. Decis Sci 50(4):877–909

    Article  Google Scholar 

  • Shu X, Hu Z (2022) Pricing and return strategy selection of online retailers considering consumer purchasing behavior. Processes 10(12):2490

    Article  Google Scholar 

  • Tu Q, Vonderembse MA, Ragu-Nathan TS, Ragu-Nathan B (2004) Measuring modularity-based manufacturing practices and their impact on mass customization capability: a customer-driven perspective. Decis Sci 35(2):147–168

    Article  Google Scholar 

  • Ülkü MA, Hsuan J (2017) Towards sustainable consumption and production: competitive pricing of modular products for green consumers. J Clean Prod 142:4230–4242

    Article  Google Scholar 

  • Wang J, He S (2022) Optimal decisions of modularity, prices and return policy in a dual-channel supply chain under mass customization. Transp Res E 160:102675

    Article  Google Scholar 

  • Wang J, Zhang Q, Lu X, Ma R, Yu B, Gao H (2022) Emission reduction and coordination of a dynamic supply chain with green reputation. Oper Res Int J 22(4):3945–3988

    Article  Google Scholar 

  • Xu X, Yan L, Choi T-M (2022) Platform operations with consumer returns windows: reselling mode versus marketplace mode. IEEE Trans Eng Manag 1–16. https://doi.org/10.1109/TEM.2022.3201275

    Article  Google Scholar 

  • Yoo SH, Kim D, Park M-S (2014) Pricing and return policy under various supply contracts in a closed-loop supply chain. Int J Prod Res 53(1):106–126

    Article  Google Scholar 

  • Zhang M, Zhao X, Qi Y (2014) The effects of organizational flatness, coordination, and product modularity on mass customization capability. Int J Prod Econ 158:145–155

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referees for their helpful comments and suggestions that greatly improved the quality of this paper. The research is supported by the National Natural Science Foundation of China under Grant Nos. 72071072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Yang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

In the centralized system, all decisions are decided by the supply chain, and whether the game sequence is simultaneous or sequential makes no mathematical difference. For interpretational convenience, we use the sequential game.

Since \(\frac{{\partial }^{2}{\pi }_{s}^{C}}{\partial {p}^{2}}=-\frac{2{\left[1-\left(1-\beta \right)T\right]}^{2}}{\beta m}<0\), \({\pi }_{s}^{C}\) is strictly concave for \(p\). Solving \(\frac{\partial {\pi }_{s}^{C}}{\partial p}=0\), we obtain \({p}^{C0}=\frac{\beta m-\left(1-\beta \right)Tmv}{2[1-\left(1-\beta \right)T]}\) and \({D}^{C0}=\frac{\beta +\left(1-\beta \right)Tv}{2\beta }\). The supply chain profit can be rewritten as follows: \({\pi }_{s}^{C}=\frac{m{[\beta +\left(1-\beta \right)Tv]}^{2}}{4\beta }-k{m}^{2}-\left(1-\beta \right){T}^{2}\), where \(\frac{{\partial }^{2}{\pi }_{s}^{C}}{\partial {T}^{2}}=-\frac{\left(1-\beta \right)[4\beta -\left(1-\beta \right)m{v}^{2}]}{2\beta }\). Thus, \(\frac{{\partial }^{2}{\pi }_{s}^{C}}{\partial {T}^{2}}<0\) if \(m<\frac{4\beta }{\left(1-\beta \right){v}^{2}}\); \(\frac{{\partial }^{2}{\pi }_{s}^{C}}{\partial {T}^{2}}>0\) if \(m>\frac{4\beta }{\left(1-\beta \right){v}^{2}}\). By solving \(\frac{\partial {\pi }_{s}^{C}}{\partial T}=0\), we obtain \({T}^{C0}=\frac{\beta mv}{4\beta -\left(1-\beta \right)m{v}^{2}}\).

  1. (1)

    When \(m<\frac{4\beta }{\left(1-\beta \right){v}^{2}}\),

    \({\pi }_{s}^{C}\) is strictly concave for \(T\) and \({T}^{C0}>0\). (a) if \(0<{T}^{C0}<1\) (i.e., \(m<\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}\)), then the optimal return window \({T}^{C*}={T}^{C0}\), and \({p}^{C*}=\frac{2{\beta }^{2}m-\beta \left(1-\beta \right){m}^{2}{v}^{2}}{4\beta -\left(1-\beta \right)m{v}^{2}-\beta \left(1-\beta \right)mv}\), \({D}^{C*}=\frac{2\beta }{4\beta -\left(1-\beta \right)m{v}^{2}}\), \({CS}^{C*}=\frac{2{\beta }^{3}m}{{[4\beta -\left(1-\beta \right)m{v}^{2}]}^{2}}\); (b) if \(1<{T}^{C0}\) (i.e., \(\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}<m<\frac{4\beta }{\left(1-\beta \right){v}^{2}}\)), then the optimal return window \({T}^{C*}=1\), and \({p}^{C*}=\frac{\beta m-\left(1-\beta \right)mv}{2\beta }\), \({D}^{C*}=\frac{\beta +\left(1-\beta \right)v}{2\beta }\), \({CS}^{C*}=\frac{{[\beta m+\left(1-\beta \right)mv]}^{2}}{8\beta m}\).

  2. (2)

    When \(\frac{4\beta }{\left(1-\beta \right){v}^{2}}<m\), \({\pi }_{s}^{C}\) is strictly convex for \(T\) and \({T}^{C0}<0\). Since \(0\le T\le 1\), then \({T}^{C*}=1\), which is the same as in \(\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}<m<\frac{4\beta }{\left(1-\beta \right){v}^{2}}\). □

Proof of Corollary 1

The logic for deriving the impacts of modularity level on the optimal pricing and return window decisions is identical for Corollary 1, Corollary 2, and Corollary 3. Thus, we will outline it explicitly for Corollary 1 only.

Due to salvage value loss, the actual salvage value for each returned item cannot exceed the sales revenue for each new product, that is, \({mv<p}^{C*}=\frac{\beta m-\left(1-\beta \right)mv}{2\beta }\). Hence, the parameter \(v\) should satisfy \(v<\frac{\beta }{1+\beta }\).

  1. a.

    if \(m<\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}\), then \(\frac{\partial {T}^{C*}}{\partial m}=\frac{4v{\beta }^{2}}{{\left(4\beta -\left(1-\beta \right)m{v}^{2}\right)}^{2}}>0\) and \(\frac{\partial {p}^{C*}}{\partial m}=\frac{\beta \left({v}^{2}\left(1-\beta \right)\left(\left(1-\beta \right)\left(\beta +v\right)mv-8\beta \right)m+8{\beta }^{2}\right)}{{\left({\beta }^{2}mv+\left(4+\left(2{v}^{2}-v\right)m\right)\beta -m{v}^{2}\right)}^{2}}>0\), where \({v}^{2}\left(1-\beta \right)\left(\left(1-\beta \right)\left(\beta +v\right)mv-8\beta \right)m+8{\beta }^{2}>\frac{8{\beta }^{2}\left(-{\left(1-\beta \right)}^{2}{v}^{2}-2{\beta }^{2}\left(1-\beta \right)v+{\beta }^{2}\right)}{{\left(\left(1-\beta \right)v+\beta \right)}^{2}}\) since \(m<\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}\), and \(-{\left(1-\beta \right)}^{2}{v}^{2}-2{\beta }^{2}\left(1-\beta \right)v+{\beta }^{2}>0\) because \(v<\frac{\beta }{1+\beta }\).

  2. b.

    if \(\frac{8\beta }{\beta v+\left(1-\beta \right){v}^{2}}<m\), then \(\frac{\partial {T}^{C*}}{\partial m}=0\), \(\frac{\partial {p}^{C*}}{\partial m}=\frac{\beta -\left(1-\beta \right)v}{2\beta }>0\). □

Similarly, Corollarys 2 and 3 can be proved, which are omitted.

Proof of Lemma 2

For solving the decentralized system, we first derive the retailer’s best response of return window and retail price to the wholesale price.

Since \(\frac{{\partial }^{2}{\pi }_{r}^{N}}{\partial {p}^{2}}=-\frac{2{\left[1-\left(1-\beta \right)T\right]}^{2}}{\beta m}<0\), \({\pi }_{r}^{N}\) is strictly concave for \(p\). By solving \(\frac{\partial {\pi }_{r}^{N}}{\partial p}=0\), we obtain \({p}^{N0}=\frac{\beta m-\left(1-\beta \right)Tmv+w}{2[1-\left(1-\beta \right)T]}\) and \({D}^{N0}=\frac{\beta m+\left(1-\beta \right)Tmv-w}{2\beta m}\). The retailer’s profit function can be rewritten as \({\pi }_{r}^{N}=\frac{{[\beta m+\left(1-\beta \right)Tmv-w]}^{2}}{4\beta m}-\left(1-\beta \right){T}^{2}\), where \(\frac{{\partial }^{2}{\pi }_{r}^{N}}{\partial {T}^{2}}=-\frac{\left(1-\beta \right)\left[4\beta -\left(1-\beta \right)m{v}^{2}\right]}{2\beta }\). Thus, \(\frac{{\partial }^{2}{\pi }_{r}^{N}}{\partial {T}^{2}}<0\) if \(m<\frac{4\beta }{\left(1-\beta \right){v}^{2}}\); \(\frac{{\partial }^{2}{\pi }_{r}^{N}}{\partial {T}^{2}}>0\) if \(m>\frac{4\beta }{\left(1-\beta \right){v}^{2}}\). By solving \(\frac{\partial {\pi }_{r}^{N}}{\partial T}=0\), we obtain \({T}^{N0}=\frac{\beta mv-vw}{4\beta -\left(1-\beta \right)m{v}^{2}}\).

  1. (1)

    When \(m<\frac{4\beta }{\left(1-\beta \right){v}^{2}}\), \({\pi }_{r}^{N}\) is strictly concave for \(T\).

    1. (a)

      if \(0<{T}^{N0}\le 1\) (i.e., \(\frac{\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{v}\le w<\beta m\)), then best response of return window \({T}^{N}={T}^{N0}\). Then, the best response of retail price and demand are: \({p}^{N}=\frac{2{\beta }^{2}m-\beta \left(1-\beta \right){m}^{2}{v}^{2}+2\beta w}{4\beta -\left(1-\beta \right)m{v}^{2}-\beta \left(1-\beta \right)mv+\left(1-\beta \right)vw}\) and \({D}^{N}=\frac{2\beta m-2w}{4\beta m-\left(1-\beta \right){m}^{2}{v}^{2}}\).

    2. (b)

      if \(1<{T}^{N0}\) (i.e., \(w<\frac{\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{v}\)), the best response of return window \({T}^{N}=1\). Similarly, \({p}^{N}=\frac{\beta m-\left(1-\beta \right)mv+w}{2\beta }\) and \({D}^{N}=\frac{\beta m+\left(1-\beta \right)mv-w}{2\beta m}\).

    3. (c)

      if \({T}^{N0}\le 0\) (i.e., \(\beta m\le w\)), the best response of return window \({T}^{N}=0\), and then \({p}^{N}=\frac{\beta m+w}{2}\) and \({D}^{N}=\frac{\beta m-w}{2\beta m}\). Due to the demand \({D}^{N}=\frac{\beta m-w}{2\beta m}<0\) under the condition of \(\beta m\le w\), we exclude the case (c).

  2. (2)

    When \(m>\frac{4\beta }{\left(1-\beta \right){v}^{2}}\), \({\pi }_{r}^{N}\) is strictly convex for \(T\).

    1. (a)

      if \(0<{T}^{N0}<1\) (i.e., \(\beta m<w<\frac{\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{v}\)). \({\pi }_{r}^{N}\left(T=0\right)-{\pi }_{r}^{N}\left(T=1\right)=\frac{\left(1-\beta \right)[-2\beta mv-\left(1-\beta \right)m{v}^{2}+2wv+4\beta ]}{4\beta }\). We find that: if \(\frac{2\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{2v}<w\), then \({\pi }_{r}^{N}\left(T=0\right)>{\pi }_{r}^{N}\left(T=1\right)\); if \(w<\frac{2\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{2v}\), then \({\pi }_{r}^{N}\left(T=0\right)<{\pi }_{r}^{N}\left(T=1\right)\). Thus, when \(\frac{2\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{2v}\le w<\frac{\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{v}\), the best response of return window \({T}^{N}=0\). Similarly, according to \({D}^{N0}\), we can obtain the best response of demand \({D}^{N}=\frac{\beta m-w}{2\beta m}<0\), and thus we exclude this case. When \(\beta m<w<\frac{2\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{2v}\), the best response of return window \({T}^{N}=1\), and then \({p}^{N}=\frac{\beta m-\left(1-\beta \right)mv+w}{2}\) and \({D}^{N}=\frac{\beta m+\left(1-\beta \right)mv-w}{2\beta m}\).

    2. (b)

      if \({T}^{N0}\le 0\) (i.e., \(w\le \beta m\)), the best response of return window \({T}^{N}=1\), and then \({p}^{N}=\frac{\beta m-\left(1-\beta \right)mv+w}{2}\) and \({D}^{N}=\frac{\beta m+\left(1-\beta \right)mv-w}{2\beta m}\).

    3. (c)

      if \(1\le {T}^{N0}\) (i.e., \(\frac{\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{v}\le w\)), the best response of return window \({T}^{N}=0\), thus \({p}^{N}=\frac{\beta m+w}{2}\) and \({D}^{N}=\frac{\beta m-w}{2\beta m}\). Due to the demand \({D}^{N}=\frac{\beta m-w}{2\beta m}<0\) under the condition of \(\beta m\le w\), we exclude the case (c).

To sum up, the best response functions in Model N are as follows: (1) When \(m<\frac{4\beta }{\left(1-\beta \right){v}^{2}}\), if \(\underset{\_}{w}\le w<\beta m\), then \({T}^{N}=\frac{\beta mv-vw}{4\beta -\left(1-\beta \right)m{v}^{2}}\), \({p}^{N}=\frac{2{\beta }^{2}m-\beta \left(1-\beta \right){m}^{2}{v}^{2}+2\beta w}{4\beta -\left(1-\beta \right)m{v}^{2}-\beta \left(1-\beta \right)mv+\left(1-\beta \right)vw}\), and \({D}^{N}=\frac{2\beta m-2w}{4\beta m-\left(1-\beta \right){m}^{2}{v}^{2}}\); if \(w<\underset{\_}{w}\), then \({T}^{N}=1\), \({p}^{N}=\frac{\beta m-\left(1-\beta \right)mv+w}{2\beta }\), and \({D}^{N}=\frac{\beta m+\left(1-\beta \right)mv-w}{2\beta m}\). (2) When \(m>\frac{4\beta }{\left(1-\beta \right){v}^{2}}\), if \(w<\overline{w}\), then \({T}^{N}=1\), \({p}^{N}=\frac{\beta m-\left(1-\beta \right)mv+w}{2}\), and \({D}^{N}=\frac{\beta m+\left(1-\beta \right)mv-w}{2\beta m}\). Where \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{w} = \frac{{\beta mv - 4\beta + \left( {1 - \beta } \right)mv^{2} }}{v}\) and \(\overline{w}=\frac{2\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{2v}\).

Second, according to the above best response, we derive the optimal wholesale price.

  1. (1)

    When \(m<\frac{4\beta }{\left(1-\beta \right){v}^{2}}\),

    1. (a)

      if \(\underset{\_}{w}\le w<\beta m\), then \({\pi }_{m}^{N}=\frac{2\beta mw-2{w}^{2}}{4\beta m-\left(1-\beta \right){m}^{2}{v}^{2}}-k{m}^{2}\). Since \(\frac{{\partial }^{2}{\pi }_{m}^{N}}{\partial {w}^{2}}=-\frac{4}{4\beta m-\left(1-\beta \right){m}^{2}{v}^{2}}<0\), \({\pi }_{m}^{N}\) is strictly concave for \(w\). By solving \(\frac{\partial {\pi }_{m}^{N}}{\partial w}=0\), we obtain \({w}_{1}^{N}=\frac{\beta m}{2}\). Then, we can obtain the optimal wholesale price: if \(m<\frac{8\beta }{\beta v+2\left(1-\beta \right){v}^{2}}\), then \({w}^{N*}={w}_{1}^{N}\); if \(m>\frac{8\beta }{\beta v+2\left(1-\beta \right){v}^{2}}\), then \({w}^{N*}=\underset{\_}{w}\).

    2. (b)

      if \(w<\underset{\_}{w}\), then \({\pi }_{m}^{N}=\frac{[\beta m+\left(1-\beta \right)mv]w-{w}^{2}}{2\beta m}-k{m}^{2}\). Since \(\frac{{\partial }^{2}{\pi }_{m}^{N}}{\partial {w}^{2}}=-\frac{1}{\beta m}<0\), \({\pi }_{m}^{N}\) is strictly concave for \(w\). By solving \(\frac{\partial {\pi }_{m}^{N}}{\partial w}=0\), we obtain \({w}_{2}^{N}=\frac{\beta m+\left(1-\beta \right)mv}{2}\). Then, we can obtain the optimal wholesale price: if \(m<\frac{8\beta }{\beta v+\left(1-\beta \right){v}^{2}}\), then \({w}^{N*}=\underset{\_}{w}\); if \(m>\frac{8\beta }{\beta v+\left(1-\beta \right){v}^{2}}\), then \({w}^{N*}={w}_{2}^{N}\).

  2. (2)

    When \(m>\frac{4\beta }{\left(1-\beta \right){v}^{2}}\),

    If \(w<\overline{w}\), \({\pi }_{m}^{N}=\frac{[\beta m+\left(1-\beta \right)mv]w-{w}^{2}}{2\beta m}-k{m}^{2}\), then \(\frac{{\partial }^{2}{\pi }_{m}^{N}}{\partial {w}^{2}}=-\frac{1}{\beta m}<0\). Thus, \({\pi }_{m}^{N}\) is strictly concave for \(w\). By solving \(\frac{\partial {\pi }_{m}^{N}}{\partial w}=0\), we obtain \({w}_{2}^{N}=\frac{\beta m+\left(1-\beta \right)mv}{2}\). We can obtain the optimal wholesale price: if \(m>\frac{4\beta }{\left(1-\beta \right){v}^{2}}\), then \({w}^{N*}={w}_{2}^{N}\).

As a result, equilibrium solutions in Model N: if \(m<\frac{8\beta }{\beta v+2\left(1-\beta \right){v}^{2}}\), then \({w}^{N*}=\frac{\beta m}{2}\), \({p}^{N*}=\frac{6{\beta }^{2}m-2\beta \left(1-\beta \right){m}^{2}{v}^{2}}{8\beta -2\left(1-\beta \right)m{v}^{2}-\beta \left(1-\beta \right)mv}\), \({T}^{N*}=\frac{\beta mv}{8\beta -2\left(1-\beta \right)m{v}^{2}}\), \({D}^{N*}=\frac{\beta }{4\beta -\left(1-\beta \right)m{v}^{2}}\), \({\pi }_{m}^{N*}=\frac{{\beta }^{2}m-k{m}^{2}\left(8\beta -2\left(1-\beta \right)m{v}^{2}\right)}{8\beta -2\left(1-\beta \right)m{v}^{2}}\), \({\pi }_{r}^{N*}=\frac{4{\beta }^{3}m-{\beta }^{2}\left(1-\beta \right){m}^{2}{v}^{2}}{4{[4\beta -\left(1-\beta \right)m{v}^{2}]}^{2}}\), and \({CS}^{N*}=\frac{{\beta }^{3}m}{2{[4\beta -\left(1-\beta \right)m{v}^{2}]}^{2}}\); if \(\frac{8\beta }{\beta v+2\left(1-\beta \right){v}^{2}}<m<\frac{8\beta }{\beta v+\left(1-\beta \right){v}^{2}}\), then \({w}^{N*}=\frac{\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{v}\), \({p}^{N*}=\frac{mv-2}{v}\), \({T}^{N*}=1\), \({D}^{N*}=\frac{2}{mv}\), \({\pi }_{m}^{N*}=\frac{2\beta mv-8\beta +2\left(1-\beta \right)m{v}^{2}-k{m}^{3}{v}^{2}}{m{v}^{2}}\), \({\pi }_{r}^{N*}=\frac{4\beta -\left(1-\beta \right)m{v}^{2}}{m{v}^{2}}\), and \({CS}^{N*}=\frac{2\beta }{m{v}^{2}}\); if \(\frac{8\beta }{\beta v+\left(1-\beta \right){v}^{2}}<m\), then \({w}^{N*}=\frac{\beta m+\left(1-\beta \right)mv}{2}\), \({p}^{N*}=\frac{3\beta m-\left(1-\beta \right)mv}{4\beta }\), \({T}^{N*}=1\), \({D}^{N*}=\frac{\beta +\left(1-\beta \right)v}{4\beta }\), \({\pi }_{m}^{N*}=\frac{{[\beta +\left(1-\beta \right)v]}^{2}m-8\beta k{m}^{2}}{8\beta }\), \({\pi }_{r}^{N*}=\frac{{[\beta +\left(1-\beta \right)v]}^{2}m-16\beta \left(1-\beta \right)}{16\beta }\), and \({CS}^{N*}=\frac{{[\beta m+\left(1-\beta \right)mv]}^{2}}{32\beta m}\). □

Proof of Lemma 3

We first derive the retailer’s best response of return window and retail price to the wholesale price. Since \(\frac{{\partial }^{2}{\pi }_{r}^{F}}{\partial {p}^{2}}=-\frac{2{\left[1-\lambda \left(1-\beta \right)T\right]}^{2}}{\beta m}<0\), \({\pi }_{r}^{F}\) is strictly concave for \(p\). By solving \(\frac{\partial {\pi }_{r}^{F}}{\partial p}=0\), we obtain \({p}^{F0}=\frac{\beta m+\left[1-\lambda \left(1-\beta \right)T\right]w}{2[1-\left(1-\beta \right)T]}\) and \({D}^{F0}=\frac{\beta m-\left[1-\lambda \left(1-\beta \right)T\right]w}{2\beta m}\). The retailer’s profit function can be rewritten as \({\pi }_{r}^{F}=\frac{{[\beta m-\left(1-\lambda \left(1-\beta \right)T\right)w]}^{2}}{4\beta m}\) where \(\frac{{\partial }^{2}{\pi }_{r}^{F}}{\partial {T}^{2}}=\frac{{\left[\lambda \left(1-\beta \right)w\right]}^{2}}{2\beta m}>0\). Thus, \({\pi }_{r}^{F}\) is strictly convex for \(T\). By solving \(\frac{\partial {\pi }_{r}^{F}}{\partial T}=0\), we obtain \({T}^{F0}=\frac{W-\beta m}{\lambda \left(1-\beta \right)w}\).

Proof of Corollary 4

Note that, when the modularity level is exogenous, the optimal return window in Model C is as follows: if \(m<\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}\), then \({T}^{C*}=\frac{\beta mv}{4\beta -\left(1-\beta \right)m{v}^{2}}\); otherwise, \({T}^{C*}=1\), where \(1-\frac{\beta mv}{4\beta -\left(1-\beta \right)m{v}^{2}}>0\) under \(m<\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}\). The optimal return window in Model F is always \({T}^{F*}=1\). Thus, \({T}^{C*}<{T}^{F*}\) under \(m<\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}\). □

Proof of Corollary 5

  1. (1)

    when \(m<\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}\),

    \({p}^{N*}-{p}^{C*}=\frac{\left(4\beta -\left(1-\beta \right)m{v}^{2}\right)\left(2-\left(1-\beta \right)mv\right)m{\beta }^{2}}{\left(8\beta -2\left(1-\beta \right)m{v}^{2}-\beta \left(1-\beta \right)mv\right)\left(4\beta -\left(1-\beta \right)m{v}^{2}-\beta \left(1-\beta \right)mv\right)}>0\), where \(4\beta -\left(1-\beta \right)m{v}^{2}>\frac{4{\beta }^{2}}{\left(1-\beta \right)v+\beta }>0\) and \(2-\left(1-\beta \right)mv>2{\beta }^{2}\) since \(m<\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}\) and \(v<\frac{\beta }{1+\beta }\).

  2. (2)

    when \(\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}<m<\frac{8\beta }{\beta v+2\left(1-\beta \right){v}^{2}}\),

    $${p}^{N*}-{p}^{C*}=\frac{m\left(\left(-2\left(1-\beta \right){v}^{2}+\beta \left(1-3\beta \right)v+{\beta }^{2}\right)\left(1-\beta \right)mv+4\beta \left(2\left(1-\beta \right)v+\left(3\beta -2\right)\beta \right)\right)}{2\beta \left(8\beta -2\left(1-\beta \right)m{v}^{2}-\beta \left(1-\beta \right)mv\right)}$$
    $$>\frac{2 m\beta \left(v\left(1-\beta \right)+\beta \left(2\beta -1\right)\right)}{\left(\left(1-\beta \right)v+\beta \right)\left(8\beta -2\left(1-\beta \right)m{v}^{2}-\beta \left(1-\beta \right)mv\right)}>0, \text{w}\text{h}\text{e}\text{r}\text{e} \left(-2\left(1-\beta \right){v}^{2}+\beta \left(1-3\beta \right)v+{\beta }^{2}\right)>\frac{2{\beta }^{3}\left(1-\beta \right)}{{\left(1+\beta \right)}^{2}}>0 \text{s}\text{i}\text{n}\text{c}\text{e} v<\frac{\beta }{1+\beta }.$$
  3. (3)

    when \(\frac{8\beta }{\beta v+2\left(1-\beta \right){v}^{2}}<m<\frac{8\beta }{\beta v+\left(1-\beta \right){v}^{2}}\),

    $${p}^{N*}-{p}^{C*}=\frac{mv-2}{v}-\frac{\beta m-\left(1-\beta \right)mv}{2\beta }=\frac{\left(\left(1-\beta \right)v+\beta \right)mv-4\beta }{2\beta v}>\frac{2\beta }{v\left(2\left(1-\beta \right)v+\beta \right)}>0.$$
  4. (4)

    when \(\frac{8\beta }{\beta v+\left(1-\beta \right){v}^{2}}<m\),

    $${p}^{N*}-{p}^{C*}=\frac{3\beta m-\left(1-\beta \right)mv}{4\beta }-\frac{\beta m-\left(1-\beta \right)mv}{2\beta }=\frac{\left(\left(1-\beta \right)v+\beta \right)m}{4\beta }>0.$$

    Thus, we can conclude that \({p}^{C*}<{p}^{N*}\). Similarly, \({p}^{C*}<{p}^{F*}\), \({{CS}^{C*}>CS}^{N*}\), \({{CS}^{C*}>CS}^{F*}\), \({D}^{C*}>{D}^{N*}\), and \({D}^{C*}>{D}^{F*}\) can be derived. □

Proof of Corollary 6

  1. (1)

    when \(m<\frac{8\beta }{\beta v+2\left(1-\beta \right){v}^{2}}\),

    $${\pi }_{m}^{N*}-{\pi }_{m}^{F*}=\frac{\left(1-\beta \right)\left[\beta mv\left(24\beta +\beta mv-6\left(1-\beta \right)m{v}^{2}\right)+4\beta \left(8\beta -3\left(1-\beta \right)m{v}^{2}\right)+{\left(1-\beta \right)}^{2}{m}^{2}{v}^{4}\right]}{4\beta \left[8\beta -2\left(1-\beta \right)m{v}^{2}\right]}>0.$$
  2. (2)

    when \(\frac{8\beta }{\beta v+2\left(1-\beta \right){v}^{2}}<m<\frac{8\beta }{\beta v+\left(1-\beta \right){v}^{2}}\),

    $${\pi }_{m}^{N*}-{\pi }_{m}^{F*}=\frac{\left[16{\beta }^{2}v+24\beta \left(1-\beta \right){v}^{2}\right]m+\left[6\beta \left(1-\beta \right){v}^{3}-{\beta }^{2}{v}^{2}-{\left(1-\beta \right)}^{2}{v}^{4}\right]{m}^{2}-64{\beta }^{2}}{8\beta m{v}^{2}}$$
    $$>\frac{8\beta \left(1-\beta \right)[9\beta +\left(1-\beta \right)v]}{{[\beta -2\left(1-\beta \right)v]}^{2}mv}>0.$$
  3. (3)

    when

    $$\frac{8\beta }{\beta v+\left(1-\beta \right){v}^{2}}<m, {\pi }_{m}^{N*}-{\pi }_{m}^{F*}=\left(1-\beta \right)>0.$$

    Thus, \({\pi }_{m}^{N*}>{\pi }_{m}^{F*}\). Similarly, we can obtain that \({\pi }_{r}^{F*}>{\pi }_{r}^{N*}\). □

Proof of Lemma 4

To ensure the concavity of profit function, we assume \(\frac{{v}^{2}\left(1-\beta \right){[\beta +\left(1-\beta \right)v]}^{3}}{{16\beta }^{3}}<k\). We first derive the optimal modularity level in Model C: when \(m<\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}\), \(\frac{\partial {\pi }_{s}^{C}}{\partial m}=\frac{4{\beta }^{3}}{{[4\beta -\left(1-\beta \right)m{v}^{2}]}^{2}}-2 km\). Then \(\frac{{\partial }^{2}{\pi }_{s}^{C}}{\partial {m}^{2}}=\frac{8{\beta }^{3}\left(1-\beta \right){v}^{2}}{{[4\beta -\left(1-\beta \right)m{v}^{2}]}^{3}}-2k<0\) and thus \({\pi }_{s}^{C}\) is strictly concave for \(m\). By solving \(\frac{\partial {\pi }_{s}^{C}}{\partial m}=0\), the optimal modularity level \({m}^{C*}=\frac{\beta \left(8kX-{X}^{2}-16{k}^{2}\right)}{3\left(1-\beta \right)k{v}^{2}X}\), where \(X={\left[{k}^{2}\left(\beta x-x+27\beta {v}^{2}-27{v}^{2}+64k\right)\right]}^{\frac{1}{3}}\) and \(x=3v\sqrt{\frac{81\beta {v}^{2}-81{v}^{2}+384k}{\beta -1}}\); when \(\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}<m\), \(\frac{\partial {\pi }_{s}^{C}}{\partial m}=\frac{{[\beta +\left(1-\beta \right)v]}^{2}}{4\beta }-2 km\). Then \(\frac{{\partial }^{2}{\pi }_{s}^{C}}{\partial {m}^{2}}=-2k<0\) and thus \({\pi }_{s}^{C}\) is strictly concave for \(m\). By solving \(\frac{\partial {\pi }_{s}^{C}}{\partial m}=0\), the optimal modularity level \({m}^{C*}=\frac{{[\beta +\left(1-\beta \right)v]}^{2}}{8\beta k}\). Hence, for Model C, the optimal decisions under endogenous modularity level are as follows: (1) when \(\frac{v{[\beta +\left(1-\beta \right)v]}^{3}}{{32\beta }^{2}}<k\), then \({m}^{C*}=\frac{\beta (8kX-{X}^{2}-16{k}^{2})}{3(1-\beta )k{v}^{2}X}\), \({p}^{C*}=\frac{2{\beta }^{2}{m}^{C*}-\beta \left(1-\beta \right){{m}^{C*}}^{2}{v}^{2}}{4\beta -\left(1-\beta \right){m}^{C*}{v}^{2}-\beta \left(1-\beta \right){m}^{C*}v}\), and \({T}^{C*}=\frac{\beta {m}^{C*}v}{4\beta -\left(1-\beta \right){m}^{C*}{v}^{2}}\); (2) when \(\frac{{v}^{2}\left(1-\beta \right){[\beta +\left(1-\beta \right)v]}^{3}}{{16\beta }^{3}}<k<\frac{v{[\beta +\left(1-\beta \right)v]}^{3}}{{32\beta }^{2}}\), then \({m}^{C*}=\frac{{[\beta +\left(1-\beta \right)v]}^{2}}{8\beta k}\), \({p}^{C*}=\frac{\beta {m}^{C*}-\left(1-\beta \right){m}^{C*}v}{2\beta }\), and \({T}^{C*}=1\).

Similarly, for Model N, the optimal decisions under endogenous modularity level are as follows: (1) when \(\frac{v{[\beta +2\left(1-\beta \right)v]}^{3}}{{128\beta }^{2}}<k\), then \({m}^{N*}=\frac{\beta (48kY-{Y}^{2}-64{k}^{2})}{6\left(1-\beta \right)k{v}^{2}Y}\), \({w}^{N*}=\frac{\beta {m}^{N*}}{2}\), \({p}^{N*}=\frac{6{\beta }^{2}{m}^{N*}-2\beta \left(1-\beta \right){{m}^{N*}}^{2}{v}^{2}}{8\beta -2\left(1-\beta \right){m}^{N*}{v}^{2}-\beta \left(1-\beta \right){m}^{N*}v}\), and \({T}^{N*}=\frac{\beta {m}^{N*}v}{8\beta -2\left(1-\beta \right){m}^{N*}{v}^{2}}\); (2) when \(\frac{v{[\beta +\left(1-\beta \right)v]}^{3}}{{128\beta }^{2}}<k<\frac{v{[\beta +2\left(1-\beta \right)v]}^{3}}{{128\beta }^{2}}\), then \({m}^{N*}=\sqrt[3]{\frac{4\beta }{k{v}^{2}}}\), \({w}^{N*}=\frac{\beta {m}^{N*}v-4\beta +\left(1-\beta \right){m}^{N*}{v}^{2}}{v}\), \({p}^{N*}=\frac{{m}^{N*}v-2}{v}\), and \({T}^{N*}=1\); (3) when \(\frac{{v}^{2}\left(1-\beta \right){[\beta +\left(1-\beta \right)v]}^{3}}{{16\beta }^{3}}<k<\frac{v{[\beta +\left(1-\beta \right)v]}^{3}}{{128\beta }^{2}}\), then \({m}^{N*}=\frac{{[\beta +\left(1-\beta \right)v]}^{2}}{16\beta k}\), \({w}^{N*}=\frac{\beta {m}^{N*}+\left(1-\beta \right){m}^{N*}v}{2}\), \({p}^{N*}=\frac{3\beta {m}^{N*}-\left(1-\beta \right){m}^{N*}v}{4\beta }\), and \({T}^{N*}=1\).

For Model F, the optimal decisions under endogenous modularity level are as follows: \({m}^{F*}=\frac{{[\beta -\left(1-\beta \right)v]}^{2}-4\beta \left(1-\beta \right)v}{16\beta k}\), \({w}^{F*}=\frac{\beta {m}^{F*}-\left(1-\beta \right){m}^{F*}v}{2\beta }\), \({p}^{F*}=\frac{3\beta {m}^{F*}-\left(1-\beta \right){m}^{F*}v}{4\beta }\), and \({T}^{F*}=1\). □

Proof of Corollary 7

When the modularity level is endogenous, the optimal return window in Model C is as follows: if \(\frac{v{[\beta +\left(1-\beta \right)v]}^{3}}{{32\beta }^{2}}<k\), then \({T}^{C*}=\frac{\beta {m}^{C*}v}{4\beta -\left(1-\beta \right){m}^{C*}{v}^{2}}\) where \({m}^{C*}=\frac{\beta \left(8kX-{X}^{2}-16{k}^{2}\right)}{3\left(1-\beta \right)k{v}^{2}X}\); otherwise, \({T}^{C*}=1\). Note that, \(1-\frac{\beta {m}^{C*}v}{4\beta -\left(1-\beta \right){m}^{C*}{v}^{2}}>0\) under \(\frac{v{[\beta +\left(1-\beta \right)v]}^{3}}{{32\beta }^{2}}<k\). The optimal return window in Model F is always \({T}^{F*}=1\). Thus, \({T}^{C*}<{T}^{F*}\) under \(\frac{v{[\beta +\left(1-\beta \right)v]}^{3}}{{32\beta }^{2}}<k\). □

Proof of coordination

Under the two-part tariff contract, the retailer’s profit is \({\pi }_{r}^{T}=\left[1-\left(1-\beta \right)T\right]\left(p-w\right)D+\left(1-\beta \right)T\left(vm-w\right)D-\left(1-\beta \right){T}^{2}-F\), where \(D=1-\frac{\left[1-\left(1-\beta \right)T\right]p}{\beta m}\). Similar to the proof of Lemma 2, the retailer’s best response is: (1) When \(m<\frac{4\beta }{\left(1-\beta \right){v}^{2}}\), if \(\underset{\_}{w}\le w<\beta m\), then \({T}^{T}=\frac{\beta mv-vw}{4\beta -\left(1-\beta \right)m{v}^{2}}\), \({p}^{T}=\frac{2{\beta }^{2}m-\beta \left(1-\beta \right){m}^{2}{v}^{2}+2\beta w}{4\beta -\left(1-\beta \right)m{v}^{2}-\beta \left(1-\beta \right)mv+\left(1-\beta \right)vw}\), \({D}^{T}=\frac{2\beta m-2w}{4\beta m-\left(1-\beta \right){m}^{2}{v}^{2}}\), and \({\pi }_{r}^{T}=\frac{{(\beta m-w)}^{2}}{[4\beta -\left(1-\beta \right)m{v}^{2}]m}-F\); if \(w<\underset{\_}{w}\), then \({T}^{T}=1\), \({p}^{T}=\frac{\beta m-\left(1-\beta \right)mv+w}{2\beta }\), \({D}^{T}=\frac{\beta m+\left(1-\beta \right)mv-w}{2\beta m}\), and \({\pi }_{r}^{T}=\frac{{[\beta m+\left(1-\beta \right)mv-w]}^{2}}{4\beta m}-F\). (2) When \(m>\frac{4\beta }{\left(1-\beta \right){v}^{2}}\), if \(w<\overline{w}\), then \({T}^{T}=1\), \({p}^{T}=\frac{\beta m-\left(1-\beta \right)mv+w}{2}\), \({D}^{T}=\frac{\beta m+\left(1-\beta \right)mv-w}{2\beta m}\), and \({\pi }_{r}^{T}=\frac{{[\beta m+\left(1-\beta \right)mv-w]}^{2}}{4\beta m}-F\). Where \(\underset{\_}{w}=\frac{\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{v}\) and \(\overline{w}=\frac{2\beta mv-4\beta +\left(1-\beta \right)m{v}^{2}}{2v}\).

The manufacturer’s profit under the two-part tariff contract is \({\pi }_{m}^{T}=wD-k{m}^{2}-F\). From the retailer’s best response, the manufacturer decides the optimal fixed fee and wholesale price under each case. (1) When \(m<\frac{4\beta }{\left(1-\beta \right){v}^{2}}\): (a) if \(\underset{\_}{w}\le w<\beta m\), \({F}^{T}=\frac{{(\beta m-w)}^{2}}{[4\beta -\left(1-\beta \right)m{v}^{2}]m}\) and \({\pi }_{m}^{T}=\frac{{\beta }^{2}{m}^{2}-{w}^{2}}{4\beta m-\left(1-\beta \right){m}^{2}{v}^{2}}-k{m}^{2}\). Thus, if \(m<\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}\), then the optimal wholesale price \({w}^{T*}=0\); (b) if \(w<\underset{\_}{w}\), \({F}^{T}=\frac{{[\beta m+\left(1-\beta \right)mv-w]}^{2}}{4\beta m}\) and \({\pi }_{m}^{T}=\frac{{[\beta +\left(1-\beta \right)v]}^{2}{m}^{2}-{w}^{2}}{4\beta m}-\left(1-\beta \right)-k{m}^{2}\). Thus, if \(\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}<m\), then \({w}^{T*}=0\). (2) When \(m>\frac{4\beta }{\left(1-\beta \right){v}^{2}}\), if \(w<\overline{w}\), \({F}^{T}=\frac{{[\beta m+\left(1-\beta \right)mv-w]}^{2}}{4\beta m}\) and \({\pi }_{m}^{T}=\frac{{[\beta +\left(1-\beta \right)v]}^{2}{m}^{2}-{w}^{2}}{4\beta m}-\left(1-\beta \right)-k{m}^{2}\). Thus, the optimal wholesale price \({w}^{T*}=0\). To sum up, the equilibrium solutions under the two-part tariff contract are as follow: (1) if \(m<\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}\), then \({T}^{T*}=\frac{\beta mv}{4\beta -\left(1-\beta \right)m{v}^{2}}\), \({p}^{T*}=\frac{2{\beta }^{2}m-\beta \left(1-\beta \right){m}^{2}{v}^{2}}{4\beta -\left(1-\beta \right)m{v}^{2}-\beta \left(1-\beta \right)mv}\), \({F}^{T*}=\frac{2\beta }{4\beta -\left(1-\beta \right)m{v}^{2}}\), \({w}^{T*}=0\), \({\pi }_{m}^{T*}=\frac{{\beta }^{2}m}{4\beta -\left(1-\beta \right)m{v}^{2}}-k{m}^{2}\), and \({\pi }_{r}^{T*}=0\); (2) if \(\frac{4\beta }{\beta v+\left(1-\beta \right){v}^{2}}<m\), then \({T}^{T*}=1\), \({p}^{T*}=\frac{\beta m-\left(1-\beta \right)mv}{2\beta }\), \({F}^{T*}=\frac{{\left[\beta m+\left(1-\beta \right)mv\right]}^{2}}{4\beta }-\left(1-\beta \right)\), \({w}^{T*}=0\), \({\pi }_{m}^{T*}=\frac{{[\beta +\left(1-\beta \right)v]}^{2}m}{4\beta }-\left(1-\beta \right)-k{m}^{2}\), and \({\pi }_{r}^{T*}=0\). □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Jiang, L. & Wan, H. Return window decision for modular mass customization products in a two-echelon returnable supply chain. Oper Res Int J 23, 57 (2023). https://doi.org/10.1007/s12351-023-00797-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12351-023-00797-3

Keywords

Navigation