Skip to main content
Log in

On a System of Sequential Caputo-Type p-Laplacian Fractional BVPs with Stability Analysis

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The main purpose of the paper is to study the qualitative theory of the solutions of a multi-point sequential Caputo–type p–Laplacian coupled system. The existence and uniqueness of the solution of the aforementioned system are studied with the help of fixed point theorems and properties of a p–Laplacian operator. Furthermore, the Hyers–Ulam stability and generalized Hyers–Ulam stability are also investigated. For the validity of the obtained results, an illustrative example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data were generated or analyzed during the current study.

References

  1. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

    Google Scholar 

  2. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of the Fractional Differential Equations, North–Holland Mathematics Studies, vol. 204 (2006)

  3. Bonyah, E., Chukwu, C. W., Juga, M. L., Fatmawati.: Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law. AIMS Math. 6(8), 8367–8389 (2021)

  4. Thabet, S.T.M., Abdo, M.S., Shah, K.: Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving Caputo-Fabrizio derivative. Adv. Differ. Equ. 2021, 184 (2021)

    MathSciNet  Google Scholar 

  5. Abdo, M.S., Hanan, K.S., Satish, A.W., Pancha, K.: On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. Chaos, Solitons Fractals 135, 109867 (2020)

    MathSciNet  Google Scholar 

  6. Abbas, N., Nadeem, S., Sial, A., Shatanawi, W.: Numerical analysis of generalized Fourier’s and Fick’s laws for micropolar Carreaufluid over a vertical stretching Riga sheet. J. Appl. Math. Mech. 103(2), e202100311 (2023)

    MathSciNet  Google Scholar 

  7. Abbas, N., Shatanawi, W., Shatnawi, T.A.M.: Numerical approach for temperature dependent properties of sutterby fluid flow with induced magnetic field past a stretching cylinder. Case Stud. Therm. Eng. 49, 103163 (2023)

    Google Scholar 

  8. Khan, A., Shah, K., Abdeljawad, T., Alqudah, M.A.: Existence of results and computational analysis of a fractional order two strain epidemic model. Results Phys. 39, 105649 (2022)

    Google Scholar 

  9. Abuasbeh, K., Shafqat, R., Alsinai, A., Awadalla, M.: Analysis of controllability of fractional functional random integroevolution equations with delay. Symmetry 15(2), 290 (2023)

    Google Scholar 

  10. Asamoah, J.K.K., Okyere, E., Yankson, E., Opoku, A.A., Adom-Konadu, A., Acheampong, E., Arthur, Y.D.: Non-fractional and fractional mathematical analysis and simulations for Q fever. Chaos, Solitons Fractals 156, 111821 (2022)

    MathSciNet  Google Scholar 

  11. Abbas, N., Shatanawi, W., Shatnawi, T.A.M.: Theoretical analysis of modified non-Newtonian micropolar nanofluid flow over vertical Riga sheet. Int. J. Modern Phys. B 37(02), 2350016 (2023)

    Google Scholar 

  12. Abbas, N., Shatanawi, W., Abodayeh, K., Shatnawi, T.A.M.: Comparative analysis of unsteady flow of induced MHD radiative Sutterby fluid flow at nonlinear stretching cylinder/sheet: Variable thermal conductivity. Alex. Eng. J. 72, 451–461 (2023)

    Google Scholar 

  13. Abbas, N., Tumreen, M., Shatanawi, W., Qasim, M., Shatnawi, T.A.M.: Thermodynamic properties of second grade nanofluid flow with radiation and chemical reaction over slendering stretching sheet. Alex. Eng. J. 70, 219–230 (2023)

    Google Scholar 

  14. Wu, Y., Ahmad, S., Ullah, A., Shah, K.: Study of the fractional-order HIV-1 infection model with uncertainty in initial data. Math. Probl. Eng. 2022, 7286460 (2022)

    Google Scholar 

  15. Zarin, R., Khaliq, H., Khan, A., Khan, D., Akgul, A., Humphries, U.W.: Deterministic and fractional modeling of a computer virus propagation. Results Phys. 33, 105130 (2022)

    Google Scholar 

  16. Li, P., Gao, R., Xu, C., Ahmad, S., Li, Y., Akgul, A.: Bifurcation behavior and PD control mechanism of a fractional delayed genetic regulatory model. Chaos, Solitons Fractals 168, 113219 (2023)

    MathSciNet  Google Scholar 

  17. Li, P., Gao, R., Xu, C., Lu, Y.: Dynamics in a fractional order predator-prey model involving MichaelismentenI type functional responses and both unequals delays. Fractals 31(4), 2340070 (2023)

    Google Scholar 

  18. Li, P., Gao, R., Xu, C., Lu, Y., Akgul, A., Baleanu, D.: Dynamics exploration for a fractional-order delayed Zooplankton-Phytoplankton system. Chaos, Solitons Fractals 166, 112975 (2023)

    MathSciNet  Google Scholar 

  19. Li, P., Peng, X., Xu, C., Han, L., Shi, S.: Novel extended mixed controller design for bifurcation control of fractional-order Myc/E2F/miR-17-92 network model concerning delay. Math. Methods Appl. Sci. (2023). https://doi.org/10.1002/mma.9597

    Article  MathSciNet  Google Scholar 

  20. Xu, C., Cui, Q., Liu, Z., Pan, Y., Cui, X., Ou, W., Rahman, M., Farman, M., Ahmad, S., Zeb, A.: Extended hybrid controller design of bifurcation in a delayed chemostat model. MATCH Commun. Math. Comput. Chem. 90(3), 609–648 (2023)

    Google Scholar 

  21. Abbas, N., Shatanawi, W., Hasan, F., Mustafa, Z.: Thermodynamic flow of radiative induced magneto modified Maxwell Sutterby fluid model at stretching sheet/cylinder. Sci. Rep. 13, 16002 (2023)

    Google Scholar 

  22. Humaira, Y., Hammad, H.A., Sarwar, M., De la Sen, M.: Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces. Adv. Differ. Equ. 2021, 242 (2021)

    MathSciNet  Google Scholar 

  23. Hammad, H.A., Zayed, M.: Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations. Bound. Value Probl. 2022, 101 (2022)

    MathSciNet  Google Scholar 

  24. Hammad, H.A., Rashwan, R.A., Nafea, A., Samei, M.E., Noeiaghdam, S.: Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions. J. Vib. Control (2023)

  25. Asaduzzaman, Md., Ali, M.Z.: Existence of multiple positive solutions to the Caputo-type nonlinear fractional differential equation with integral boundary value conditions. Fixed Point Theory 23(1), 127–142 (2022)

    MathSciNet  Google Scholar 

  26. Abbas, M.I., Ragusa, M.A.: On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 13(2), 264 (2021)

    Google Scholar 

  27. Abbas, M.I., Ragusa, M.A.: Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler functions. Appl. Anal. 101(9), 3231–3245 (2022)

    MathSciNet  Google Scholar 

  28. Ahmad, B., Ntouyas, S.K., Tariboon, J.: A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Acta Mathematica Scientia 36(6), 1631–1640 (2016)

    MathSciNet  Google Scholar 

  29. Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended \(b\)-Metric Space. Symmetry 11(5), 686 (2019)

    Google Scholar 

  30. Alsaedi, A., Hamdan, S., Ahmad, B., Ntouyas, S.K.: Existence results for coupled nonlinear fractional differential equations of different orders with nonlocal coupled boundary conditions. J. Inequal. Appl. 2021, 95 (2021)

    MathSciNet  Google Scholar 

  31. Leibenson, L.S.: General problem of the movement of a compressible fluid in a porous medium. Izvestiya Akademii Nauk Kirgizskoi SSR 9(1), 7–10 (1983)

    MathSciNet  Google Scholar 

  32. Liang, Z., Han, X., Li, A.: Some properties and applications related to the \((2, p)\)-Laplacian operator. Bound. Value Probl. 2016, 58 (2016)

    MathSciNet  Google Scholar 

  33. Khamessi, B., Hamiaz, A.: Existence and exact asymptotic behaviour of positive solutions for fractional boundary value problem with \(p\)-Laplacian operator. J. Taibah Univ. Sci. 13(1), 370–376 (2019)

    Google Scholar 

  34. Bai, C.: Existence and uniqueness of solutions for fractional boundary value problems with \(p\)-Laplacian operator. Adv. Differ. Equ. 2018, 4 (2018)

    MathSciNet  Google Scholar 

  35. Khan, H., Tunc, C., Chen, W., Khan, A.: Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator. J. Appl. Anal. Comput. 8(4), 1211–1226 (2018)

    MathSciNet  Google Scholar 

  36. Jafari, H., Baleanu, D., Khan, H., Khan, R.A., Khan, A.: Existence criterion for the solutions of fractional order p-Laplacian boundary value problems. Bound. Value Probl. 2015, 164 (2015)

    MathSciNet  Google Scholar 

  37. Matar, M.M., Lubbad, A.A., Alzabut, J.: On \(p\)-Laplacian boundary value problems involving Caputo-Katugampula fractional derivatives. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6534

    Article  Google Scholar 

  38. Shao, J., Guo, B.: Existence of solutions and Hyers-Ulam stability for a coupled system of nonlinear fractional differential equations with \(p\)-Laplacian operator. Symmetry 13(7), 1160 (2021)

    Google Scholar 

  39. Ali, Z., Zada, A., Shah, K.: Ulam stability results for the solutions of nonlinear implicit fractional order differential equations. Hacet. J. Math. Stat. 48(4), 1092–1109 (2019)

    MathSciNet  Google Scholar 

  40. Bai, Z., Lv, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    MathSciNet  Google Scholar 

  41. Khan, A., Li, Y., Shah, K., Khan, T.S.: On coupled \(p\)-Laplacian fractional differential equations with nonlinear boundary conditions. Complexity 2017, 8197610 (2017)

    MathSciNet  Google Scholar 

  42. Sitho, S., Ntouyas, S.K., Samadi, A., Tariboon, J.: Boundary value problems for \(\psi \)-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions. Mathematics 9(9), 1001 (2021)

    Google Scholar 

  43. Waheed, H., Zada, A., Rizwan, R., Popa, I.L.: Hyers-Ulam stability for a coupled system of fractional differential equation with \(p\)-Laplacian operator having integral boundary conditions. Qual. Theory Dyn. Syst. 21, 92 (2022)

    MathSciNet  Google Scholar 

  44. Chikh, S.B., Amara, A., Etemad, S., Rezapour, S.: On Hyers-Ulam stability of a multi-order boundary value problems via Riemann-Liouville derivatives and integrals. Adv. Differ. Equ. 2020, 547 (2020)

    MathSciNet  Google Scholar 

  45. Choucha, O., Amara, A., Etemad, S., Rezapour, S., Torres, D.F.M., Botmart, T.: On the Ulam-Hyers-Rassias stability of two structures of discrete fractional three-point boundary value problems: Existence theory. AIMS Math. 8(1), 1455–1474 (2023)

    MathSciNet  Google Scholar 

  46. Petrusel, A., Rus, I.A.: Ulam Stability of Zero Point Equations, pp. 345–364. Springer, Cham (2019)

    Google Scholar 

Download references

Acknowledgements

The fourth and fifth authors would like to thank Azarbaijan Shahid Madani University. All authors would like to thank dear reviewers for their useful and constructive comments to improve the quality of the paper.

Funding

No funds were received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HW, AZ, SE; Formal Analysis: HW, AZ, ILP, SE, SR; Investigation: AZ, ILP; Methodology: HW, AZ, ILP, SE, SR; Software: HW, SE; Writing-Original Draft: HW, SE; Writing-Review & Editing: AZ, SR; All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sina Etemad or Shahram Rezapour.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waheed, H., Zada, A., Popa, IL. et al. On a System of Sequential Caputo-Type p-Laplacian Fractional BVPs with Stability Analysis. Qual. Theory Dyn. Syst. 23, 128 (2024). https://doi.org/10.1007/s12346-024-00988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-00988-z

Keywords

Mathematics Subject Classification

Navigation