Skip to main content
Log in

Quasilinear Coupled System in the Frame of Nonsingular ABC-Derivatives with p-Laplacian Operator at Resonance

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We investigate the existence of solutions for coupled systems of fractional p-Laplacian quasilinear boundary value problems at resonance given by the Atangana–Baleanu–Caputo (shortly, ABC) derivatives formulations are based on the well-known Mittag-Leffler kernel utilizing Ge’s application of Mawhin’s continuation theorem. Examples are provided to demonstrate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)

    MathSciNet  Google Scholar 

  2. Angstmann, C.N., Erickson, A.M., Henry, B.I., McGann, A.V., Murray, J.M., Nichols, J.A.: Fractional order compartment models. SIAM J. Appl. Math. 77, 430–446 (2017)

    MathSciNet  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)

    Google Scholar 

  4. Khalil, R., Al, H.M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  Google Scholar 

  5. Atangana A., Noutchie S.C.O.: Model of break-bone fever via beta-derivatives. Bio Med. Res. Int. (2014) 2014, Article ID 523159

  6. Jarad, F., Baleanu, D., Abdeljawad, A.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 142, 2012 (2012)

    MathSciNet  Google Scholar 

  7. Atangana, A.: On the new fractional derivative and application to nonlinear fisher’s reaction–diffusion equation. Appl. Math. Comput. 273, 948–956 (2016)

    MathSciNet  Google Scholar 

  8. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)

    Google Scholar 

  9. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–9 (2016)

    Google Scholar 

  10. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2(1), 87–92 (2015)

    Google Scholar 

  11. Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)

    MathSciNet  Google Scholar 

  12. Jarad, F., Abdeljawad, T., Hammouch, Z.: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos, Solitons Fractals 117, 16–20 (2018)

    MathSciNet  Google Scholar 

  13. Baleanu, D., Alzabut, J., Jonnalagadda, J.M., Adjabi, Y., Matar, M.M.: A coupled system of generalized Sturm–Liouville problems and Langevin fractional differential equations in the framework of nonlocal and nonsingular derivatives. Adv. Differ. Equ. 2020, 239 (2020)

    MathSciNet  Google Scholar 

  14. Ravichandran, C., et al.: On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions. Chaos Solitons Fractals 139, 110012 (2020)

    MathSciNet  Google Scholar 

  15. Das, A., Hazarika, B., Panda, S.K., et al.: An existence result for an infinite system of implicit fractional integral equations via generalized Darbo’s fixed point theorem. Comput. Appl. Math. 40, 143 (2021). https://doi.org/10.1007/s40314-021-01537-z

    Article  MathSciNet  Google Scholar 

  16. Kumari, P.S., Panthi, D.: Cyclic compatible contraction and related fixed point theorems. Fixed Point Theory Appl 28, 2016 (2016). https://doi.org/10.1186/s13663-016-0521-8

    Article  MathSciNet  Google Scholar 

  17. Sumati Kumari, P., Alqahtani, O., Karapınar, E.: Some fixed-point theorems in \(b\)-dislocated metric space and applications. Symmetry 10, 691 (2018). https://doi.org/10.3390/sym10120691

    Article  Google Scholar 

  18. Panda, S.K., Abdeljawad, T., Ravichandran, C.: Novel fixed point approach to Atangana–Baleanu fractional and Lp-Fredholm integral equations. Alex. Eng. J. 59(4), 1959–1970 (2020). https://doi.org/10.1016/j.aej.2019.12.027

    Article  Google Scholar 

  19. Panda, S.K., Atangana, A., Abdeljawad, T.: Existence results and numerical study on novel coronavirus 2019-ncov/sars-cov-2 model using differential operators based on the generalized Mittag-Leffler kernel and fixed points. Fractals 30(08), 2240214 (2022). https://doi.org/10.1142/S0218348X22402149

    Article  Google Scholar 

  20. Panda, S.K., Atangana, A., Nieto, J.J.: New insights on novel coronavirus 2019-nCoV/SARS-CoV-2 modelling in the aspect of fractional derivatives and fixed points. Math. Biosci. Eng. 18(6), 8683–8726 (2021). https://doi.org/10.3934/mbe.2021430

    Article  MathSciNet  Google Scholar 

  21. O’Regan, D., Cho, Y.J., Chen, Y.Q.: Topological Degree Theory and Applications. Chapman and Hall/CRC Press, Boca Raton (2006)

    Google Scholar 

  22. Mawhin J.: Topological degree methods in nonlinear boundary value problems. In: NSFCBMS Regional Conferences Series in Mathematics. American Mathematics Society (1979)

  23. Gaines, R.E., Mawhin, J.L.: Coincidence Degree, and Nonlinear Differential Equations, volume 568 of Lecture Notes in Mathematic. Springer (1977)

  24. Ge, W., Ren, J.: An extension of Mawhin’s continuation theorem and its application to boundary value problems with a \(p\)-Laplacian. Nonlinear Anal. 58(3–4), 477–488 (2004)

    MathSciNet  Google Scholar 

  25. Du, B., Hu, X.: A new continuation theorem for the existence of solutions to \(p\)-Laplacian BVP at resonance. Appl. Math. Comput. 208, 172–176 (2009)

    MathSciNet  Google Scholar 

  26. Leibenson, L.S.: General problem of the movement of a compressible fluid in a porous medium. Izv. Akad. Nauk Kirg. SSSR 9, 7–10 (1983)

    MathSciNet  Google Scholar 

  27. Fulina, S.: On Mawhin’s continuation principles. An. St. Univ. Ovidius Constanta 13(1), 73–78 (2005)

    MathSciNet  Google Scholar 

  28. Hu, L., Zhang, S., Shl, A.: Existence result for nonlinear fractional differential equation with \(p\)-Laplacian operator at resonance. J. Appl. Math. Comput. 48, 519–532 (2015)

    MathSciNet  Google Scholar 

  29. Lian, L., Ge, W.: The existence of solutions of \(m\)-point \(p\)-Laplacian boundary value problems at resonance. Acta Math. Appl. Sin. 28, 288–295 (2005)

    MathSciNet  Google Scholar 

  30. Xue, C., Ge, W.: The existence of solutions for multi-point boundary value problem at resonance. Acta Math. Sin. 48, 281–290 (2005)

    MathSciNet  Google Scholar 

  31. Ma, R.: Existence results of a m-point boundary value problem at resonance. J. Math. Anal. Appl. 294, 147–157 (2004)

    MathSciNet  Google Scholar 

  32. Lu, S., Ge, W.: On the existence of m-point boundary value problem at resonance for higher order differential equation. J. Math. Anal. Appl. 287, 522–539 (2003)

    MathSciNet  Google Scholar 

  33. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    Google Scholar 

  34. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    Google Scholar 

  35. Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64–69 (2009)

    MathSciNet  Google Scholar 

  36. Su, X.: Existence of solution of boundary value problem for coupled system of fractional differential equations. Eng. Math. 26, 134–137 (2009)

    MathSciNet  Google Scholar 

  37. Yang, A., Ge, W.: Positive solutions for boundary value problems of \(N\)-dimension nonlinear fractional differential system. Bound. Value Probl. 437–453 (2008)

  38. Kosmatov, N.: A boundary value problem of fractional order at resonance. Electron. J. Differ. Equ. 135, 1–10 (2010)

    MathSciNet  Google Scholar 

  39. Jiang, W.: The existence of solutions for boundary value problems of fractional differential equations at resonance. Nonlinear Anal. 74, 1987–1994 (2011)

    MathSciNet  Google Scholar 

  40. Yan, P.: Non-resonance for one-dimensional p-Laplacian with regular restoring. J. Math. Anal. Appl. 285, 141–154 (2003)

    MathSciNet  Google Scholar 

  41. Ahmad, B., Alsaedi, A.: Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations. Fixed Point Theory Appl. 2010, 1–17 (2010)

    MathSciNet  Google Scholar 

  42. Ahmad, B., Nieto, J.J., Alsaedi, A., Aqlan, M.: A coupled system of Caputo-type sequential fractional differential equations with coupled (periodic/anti-periodic type) boundary conditions. Mediterr. J. Math. 14(6), Article ID 227,15 (2017)

  43. Agarwal, R.P., Ahmad, B., Garout, D., Alsaedi, A.: Existence results for coupled nonlinear fractional differential equations equipped with nonlocal coupled flux and multi-point-boundary conditions. Chaos, Solitons Fractals 102, 149–161 (2017)

    MathSciNet  Google Scholar 

  44. Zhou, X., Xu, C.: Well-posedness of a kind of nonlinear coupled system of fractional differential equations. Sci. China Math. 59, 1209–1220 (2016)

    MathSciNet  Google Scholar 

  45. Wang, J., Zhang, Y.: Analysis of fractional order differential coupled systems. Math. Methods Appl. Sci. 38, 3322–3338 (2015)

    MathSciNet  Google Scholar 

  46. Liu, W., Yan, X., Qi, W.: Positive solutions for coupled nonlinear fractional differential equations. J. Appl. Math., Art. ID 790862 (2014)

  47. Hussain, S., et al.: On the stochastic modeling of COVID-19 under the environmental white noise. J. Funct. Spaces 2022, 1–9 (2022)

    MathSciNet  Google Scholar 

  48. Ahmad, M., et al.: On the existence and stability of a neutral stochastic fractional differential system. Fractal Fract 4, 203 (2022)

    Google Scholar 

  49. Mohammadi, H., et al.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos, Solitons Fractals 144, 110668 (2021)

    MathSciNet  Google Scholar 

  50. Khan, H., et al.: A case study of fractal-fractional tuberculosis model in China: existence and stability theories along with numerical simulations. Math. Comput. Simul. 198, 455–473 (2022)

    MathSciNet  Google Scholar 

  51. Etemad, S., et al.: Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos, Solitons Fractals 162, 112511 (2022)

    MathSciNet  Google Scholar 

  52. Matar, M.M., et al.: Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 1, 1–18 (2021)

    MathSciNet  Google Scholar 

  53. Baleanu, D., et al.: A novel modeling of boundary value problems on the glucose graph. Commun. Nonlinear Sci. Numer. Simul. 100, 105844 (2021)

    MathSciNet  Google Scholar 

  54. Baleanu, D., et al.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos, Solitons Fractals 134, 109705 (2020)

    MathSciNet  Google Scholar 

  55. Tuan, N.H., Hakimeh, M., Shahram, R.: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos, Solitons Fractals 140, 110107 (2020)

    MathSciNet  Google Scholar 

  56. Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of \( CD4^{+} \) T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 1, 1–17 (2020)

    MathSciNet  Google Scholar 

  57. Rehman, M., Khan, R.: A note on boundary value problems for a coupled system of fractional differential equations. Comput. Math. Appl. 61, 2630–2637 (2011)

    MathSciNet  Google Scholar 

  58. Jiang, W.: Solvability for a coupled system of fractional differential equations at resonance. Nonlinear Anal. 13, 2285–2292 (2012)

    MathSciNet  Google Scholar 

  59. Yang, Z., Wang, X., Li, H.: Positive solutions for a system of second-order quasilinear boundary value problems. Nonlinear Anal. 195, 111749 (2020)

    MathSciNet  Google Scholar 

  60. Hu, Z., Liu, W., Liu, J.: Existence of solutions for a coupled system of fractional p-Laplacian equations at resonance. Adv. Difference Equ. 2013, 312 (2013)

    MathSciNet  Google Scholar 

  61. Ercan, A., Ozarslan, R., Bas, E.: Existence and uniqueness analysis of solutions for Hilfer fractional spectral problems with applications. Comput. Appl. Math. 40, 5 (2021). https://doi.org/10.1007/s40314-020-01382-6

    Article  MathSciNet  Google Scholar 

  62. Ercan, A.: Comparative analysis for fractional nonlinear Sturm–Liouville equations with singular and non-singular kernels. AIMS Math. 7(7), 13325–13343 (2022)

    MathSciNet  Google Scholar 

  63. Abdeljawad, T., Baleanu, D.: Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Adv. Differ. Equ. 2016, 232 (2016)

    MathSciNet  Google Scholar 

  64. Kuang, J.: Applied Inequalities, p. 132. Shandong Science and Technology Press, Jinan (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.B. and A.Y. wrote the main manuscrit text. F. J. and S.k.P. put the manuscript in its last form. All authors reviewed the manuscript.

Corresponding author

Correspondence to Fahd Jarad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouloudene, M., Jarad, F., Adjabi, Y. et al. Quasilinear Coupled System in the Frame of Nonsingular ABC-Derivatives with p-Laplacian Operator at Resonance. Qual. Theory Dyn. Syst. 23, 47 (2024). https://doi.org/10.1007/s12346-023-00902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00902-z

Keywords

Mathematics Subject Classification

Navigation