Skip to main content
Log in

Investigating the Existence Results for Hilfer Fractional Stochastic Evolution Inclusions of Order \(1<{\mu }<2\)

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The objective of this article is to investigate the issue of existence results for Hilfer fractional stochastic differential inclusions of order \(1<\mu <2\) in Hilbert spaces. Our discussion is based on fractional calculus, multivalued analysis, sine and cosine operators, and Bohnenblust–Karlin’s fixed point theorem. At first, we investigate the existence of a mild solution for the Hilfer fractional stochastic differential system of order \(1<\mu <2\). After that, we developed our system with Sobolev-type, and we provided the existence results of a mild solution for the considered system. Then, the ideas of nonlocal conditions are applied in the Sobolev-type Hilfer fractional stochastic system. Finally, an example is offered in order to illustrate the effectiveness of the main theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abdo, M.S., Abdeljawad, T., Shah, K., Ali, S.M.: On nonlinear coupled evolution system with nonlocal subsidiary conditions under fractal-fractional order derivative. Math. Methods Appl. Sci. 44(8), 6581–6600 (2021)

    MathSciNet  Google Scholar 

  2. Agarwal, S., Bahuguna, D.: Existence of solutions to Sobolev-type partial neutral differential equations. J. Appl. Math. Stoch. Anal. 2006, 1–10 (2006)

    MathSciNet  Google Scholar 

  3. Alkhazzan, A., Wang, J., Nie, Y., Khan, H., Alzabut, J.: A stochastic SIRS modeling of transport-related infection with three types of noises. Alex. Eng. J. 76, 557–572 (2023)

    Google Scholar 

  4. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional calculus models and numerical methods. Series on complexity, non-linearity and chaos, vol 3, World Scientific Publishing, Boston (2012)

  5. Bohnenblust, H.F., Karlin, S.: On a Theorem of Ville. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games. Princeton University Press, Princeton (1951)

    Google Scholar 

  6. Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991)

    MathSciNet  Google Scholar 

  7. Byszewski, L., Akca, H.: On a mild solution of a semilinear functional differential evolution nonlocal problem. J. Appl. Math. Stoch. Anal. 10(3), 265–271 (1997)

    MathSciNet  Google Scholar 

  8. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  9. Diethelm, K.: The analysis of fractional differential equations. Lecture Notes in Mathematics, Springer-Verlag, Berlin (2010)

  10. Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions. Asian J. Control 24(5), 2378–2394 (2022)

    MathSciNet  Google Scholar 

  11. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, K.S.: New discussion regarding approximate controllability for Sobolev-type fractional stochastic hemivariational inequalities of order \(r\in (1,2)\). Commun. Nonlinear Sci. Numer. Simul. 116, 1–21 (2023)

    Google Scholar 

  12. Deimling, K.: Multivalued Differential Equations, vol. 1. De Gruyter, Berlin (1992)

    Google Scholar 

  13. Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64, 1616–1626 (2012)

    MathSciNet  Google Scholar 

  14. Gu, H.B., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MathSciNet  Google Scholar 

  15. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  16. He, J.W., Liang, Y., Ahmad, B., Zhou, Y.: Nonlocal fractional evolution inclusions of order \(\alpha \in (1,2)\). Mathematics 209(7), 1–17 (2019)

    Google Scholar 

  17. Huseynov, I.T., Ahmadova, A., Mahmudov, N.I.: On a study of Sobolev-type fractional functional evolution equations. Math. Methods Appl. Sci. 45(9), 5002–5042 (2022)

    MathSciNet  Google Scholar 

  18. Hussain, S., Tunc, O., ur Rahman, G., Khan, H., Nadia, E.: Mathematical analysis of stochastic epidemic model of MERS-corona and application of ergodic theory. Math. Comput. Simul. 207, 130–150 (2023)

    MathSciNet  Google Scholar 

  19. Kavitha, K., Vijayakumar, V., Nisar, K.S.: On the approximate controllability of non-densely defined Sobolev-type nonlocal Hilfer fractional neutral Volterra-Fredholm delay integrodifferential system. Alex. Eng. J. 69, 57–65 (2023)

    Google Scholar 

  20. Khan, H., Alzabut, J., Gulzar, H., Tunc, O., Pinelas, S.: On system of variable order nonlinear \(p\)-Laplacian fractional differential equations with biological application. Mathematics 11(8), 1–17 (2023)

    Google Scholar 

  21. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

  22. Kisielewicz, M.: Stochastic differential inclusions and applications, Springer Optimization and Its Applications. vol 18, Springer, New York (2013)

  23. Lachouri, A., Abdo, M.S., Ardjouni, A., Shah, K., Abdeljawad, T.: Investigation of fractional order inclusion problem with Mittag-Leffler type derivative. J. Pseudo-Differ. Oper. Appl. 14(3), 1–16 (2023)

    MathSciNet  Google Scholar 

  24. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers (2009)

    Google Scholar 

  25. Lastoa, A., Opial, Z.: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13, 781–786 (1965)

    Google Scholar 

  26. Mao, X.: Stochastic Differential Equations and Applications. Woodhead publishing (2007)

    Google Scholar 

  27. Papageorgiou, N., Hu, S.: Handbook of Multivalued Analysis (Theory). Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  29. Lightbourne, J.H., Rankin, S.M.: A partial functional differential equation of Sobolev type. J. Math. Anal. Appl. 93(2), 328–337 (1983)

    MathSciNet  Google Scholar 

  30. Li, Q., Zhou, Y.: The existence of mild solutions for Hilfer fractional stochastic evolution equations with order \(\mu \in (1,2)\). Fractal Fract. 7(7), 1–23 (2023)

    MathSciNet  Google Scholar 

  31. Raja, M.M., Vijayakumar, V., Shukla, A., Nisar, K.S., Rezapour, S.: Investigating existence results for fractional evolution inclusions with order \(r \in (1,2)\) in Banach space. Int. J. Nonlinear Sci. Numer. Simul. (2022). https://doi.org/10.1515/ijnsns-2021-0368

    Article  Google Scholar 

  32. Sakthivel, R., Ren, Y., Debbouche, A., Mahmudo, N.I.: Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions. Appl. Anal. 95(11), 2361–2382 (2016)

    MathSciNet  Google Scholar 

  33. Shah, K., Sher, M., Abdeljawad, T.: Study of evolution problem under Mittag-Leffler type fractional order derivative. Alex. Eng. J. 59(5), 3945–3951 (2020)

    Google Scholar 

  34. Shah, K., Ullah, A., Nieto, J.J.: Study of fractional order impulsive evolution problem under nonlocal Cauchy conditions. Math. Methods Appl. Sci. 44(11), 8516–8527 (2021)

    MathSciNet  Google Scholar 

  35. Sher, M., Shah, K., Rassias, J.: On qualitative theory of fractional order delay evolution equation via the prior estimate method. Math. Methods Appl. Sci. 43(10), 6464–6475 (2020)

    MathSciNet  Google Scholar 

  36. Shu, X.B., Wang, Q.: The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order \(1<\alpha <2\). Comput. Math. Appl. 64, 2100–2110 (2012)

    MathSciNet  Google Scholar 

  37. Shu, L., Shu, X.B., Mao, J.: Approximate controllability and existence of mild solutions for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order \(1<\alpha <2\). Fract. Calc. Appl. Anal. 22(4), 1086–1112 (2019)

    MathSciNet  Google Scholar 

  38. Slama, A., Boudaoui, A.: Approximate controllability of fractional nonlinear neutral stochastic differential inclusion with nonlocal conditions and infinite delay, Arabian. J. Math. 6, 31–54 (2017)

    Google Scholar 

  39. Sousa, J.V.C., Jarad, F., Abdeljawad, T.: Existence of mild solutions to Hilfer fractional evolution equations in Banach space. Ann. Funct. Anal. 12, 1–16 (2021)

    MathSciNet  Google Scholar 

  40. Sousa, J.V.C., De Oliveira, E.C.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    MathSciNet  Google Scholar 

  41. Sousa, J.V.C., De Oliveira, E.C.: Leibniz type rule: \(\psi \)-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 77, 305–311 (2019)

    MathSciNet  Google Scholar 

  42. Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Hungar. 32, 75–96 (1978)

    MathSciNet  Google Scholar 

  43. Telli, B., Souid, M.S., Alzabut, J., Khan, H.: Existence and uniqueness Theorems for a variable-order fractional differential equation with delay. Axioms 12(4), 1–15 (2023)

    Google Scholar 

  44. Wang, J.R., Zhang, Y.: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266, 850–859 (2015)

    MathSciNet  Google Scholar 

  45. Wang, J.R., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real World Appl. 12, 3642–3653 (2011)

    MathSciNet  Google Scholar 

  46. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Google Scholar 

  47. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, New York (2015)

    Google Scholar 

  48. Zhou, Y., He, J.W.: New results on controllability of fractional evolution systems with order \(\alpha \in (1,2)\). Evolution Equations and Control theory 10(3), 491–509 (2021)

    MathSciNet  Google Scholar 

  49. Zhou, Y., He, J.W.: A Cauchy problem for fractional evolution equations with Hilfer’s fractional derivative on semi-infinite interval, Fractional Calculus and Applied. Analysis 25, 924–961 (2022)

    Google Scholar 

Download references

Funding

There are no funders to report for this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vijayakumar.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeesh, J., Vijayakumar, V. Investigating the Existence Results for Hilfer Fractional Stochastic Evolution Inclusions of Order \(1<{\mu }<2\). Qual. Theory Dyn. Syst. 23, 46 (2024). https://doi.org/10.1007/s12346-023-00899-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00899-5

Keywords

Mathematics Subject Classification

Navigation