Skip to main content
Log in

Estimation of the Boundary of the Limit Cycle of Brusselator Oscillators by the Renormalization Group Method

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, a method to explore the limit cycle region in the parameter space of a 2D nonlinear chemical oscillator was provided. Applying the renormalization group method, we derive that the boundaries of the Brusselator oscillator’s limit cycles at various points in parameter space can be predicted. The validity of our method is verified by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. A limit cycle is an isolated closed trajectory. Isolated means that neighboring trajectories are not closed [1].

  2. Liénard system is defined as nonlinear differential equation system of the form: \(\ddot{x} + f(x){\dot{x}} + g(x) = 0\). From a mechanical perspective, \(-f(x){\dot{x}}\) is nonlinear damping force, while \(-g(x)\) is nonlinear restoring force [1].

  3. Non-Liénard system refers to nonlinear differential equation systems that do not satisfy the form of Liénard system.

  4. Glycolysis is an energy metabolism process that converts glucose into molecules that can provide energy to the cell. The glycolytic oscillator is a theoretical model that helps us understand how the internal biochemical reactions in a cell generate regular oscillations. These oscillatory phenomena inside cells are crucial for regulating cellular metabolism, adapting to environmental changes, and coordinating the cell’s lifecycle.

  5. The ring domain satisfies the following properties:

    (i) Closure and boundedness: It is a closed and bounded subset. (ii) Absence of fixed points: It does not contain any fixed points of the system’s dynamical equations.

References

  1. Strogatz, S., Friedman, M., Mallinckrodt, A.J., McKay, S.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. American Institute of Physics, College Park (1994)

    Google Scholar 

  2. Tsai, J.: Existence of traveling waves in a simple isothermal chemical system with the same order for autocatalysis and decay. Q. Appl. Math. 69(1), 123–146 (2011). https://doi.org/10.1090/S0033-569X-2010-01236-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, X., Qi, Y., Zhang, Y.: Existence of traveling waves of auto-catalytic systems with decay. J. Differ. Equ. 260(11), 7982–7999 (2016). https://doi.org/10.1016/j.jde.2016.02.009

    Article  MathSciNet  MATH  Google Scholar 

  4. Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems. J. Chem. Phys. 48(4), 1695–1700 (1968). https://doi.org/10.1063/1.1668896

    Article  Google Scholar 

  5. Yadav, O.P., Jiwari, R.: A finite element approach to capture turing patterns of autocatalytic Brusselator model. J. Math. Chem. 57(3), 769–789 (2019). https://doi.org/10.1007/s10910-018-0982-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Tributsch, H., Cermak, J., Nadezhdina, N.: Kinetic studies on the tensile state of water in trees. J. Phys. Chem. B 109(37), 17693–17707 (2005). https://doi.org/10.1021/jp051242u

    Article  Google Scholar 

  7. Ruth, M. , Hannon, B. : The Brusselator. Modeling dynamic biological systems. In: Modeling Dynamic Systems. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05615-9_10

  8. Gafiychuk, V., Datsko, B.: Stability analysis and limit cycle in fractional system with Brusselator nonlinearities. Phys. Lett. A 372(29), 4902–4904 (2008). https://doi.org/10.1016/j.physleta.2008.05.045

    Article  MATH  Google Scholar 

  9. Rech, P.C.: Nonlinear dynamics of two discrete-time versions of the continuous-time Brusselator model. Int. J. Bifurc. Chaos 29(10), 1950142 (2019). https://doi.org/10.1142/S0218127419501426

    Article  MathSciNet  MATH  Google Scholar 

  10. Arioli, G.: Computer assisted proof of branches of stationary and periodic solutions, and Hopf bifurcations, for dissipative PDEs. Commun. Nonlinear Sci. Numer. Simul. 105, 106079 (2022). https://doi.org/10.1016/j.cnsns.2021.106079

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, W., Yu, M., Karimov, A., Stenflo, L.: Intense oscillations in the expansion of an inhomogeneous cylindrical electron-positron layer. Phys. Scr. 88(5), 055501 (2013). https://doi.org/10.1088/0031-8949/88/05/055501

    Article  Google Scholar 

  12. Kwuimy, C.A.K., Nataraj, C.: Recurrence and Joint Recurrence Analysis of Multiple Attractors Energy Harvesting System. Structural Nonlinear Dynamics and Diagnsis. Springer Proceedings in Physics (2015). https://doi.org/10.1007/978-3-319-19851-4_6

  13. Chen, L., Goldenfeld, N., Oono, Y.: Renormalization group and singular perturbations: multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev. E 54(1), 376 (1996). https://doi.org/10.1103/PhysRevE.54.376

    Article  Google Scholar 

  14. DeVille, R.L., Harkin, A., Holzer, M., Josić, K., Kaper, T.J.: Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations. Physica D 237(8), 1029–1052 (2008). https://doi.org/10.1016/j.physd.2007.12.009

    Article  MathSciNet  MATH  Google Scholar 

  15. Banerjee, D., Bhattacharjee, J.K.: Renormalization group and Liénard systems of differential equations. J. Phys. A Math. Theor. 43(6), 062001 (2010). https://doi.org/10.1088/1751-8113/43/6/062001

    Article  MATH  Google Scholar 

  16. Sarkar, A., Bhattacharjee, J., Chakraborty, S., Banerjee, D.: Center or limit cycle: renormalization group as a probe. Eur. Phys. J. D 64(2), 479–489 (2011). https://doi.org/10.1140/epjd/e2011-20060-1

    Article  Google Scholar 

  17. Das, D., Banerjee, D., Bhattacharjee, J.K.: Super-critical and sub-critical Hopf bifurcations in two and three dimensions. Nonlinear Dyn. 77(1), 169–184 (2014). https://doi.org/10.1007/s11071-014-1282-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Dutta, A., Das, D., Banerjee, D., Bhattacharjee, J.K.: Estimating the boundaries of a limit cycle in a 2D dynamical system using renormalization group. Commun. Nonlinear Sci. Numer. Simul. 57, 47–57 (2018). https://doi.org/10.1016/j.cnsns.2017.06.010

    Article  MathSciNet  MATH  Google Scholar 

  19. Dutta, A., Roy, J., Banerjee, D.: Predicting limit cycle boundaries deep inside parameter space of a 2D biochemical nonlinear oscillator using renormalization group. Int. J. Bifurc. Chaos 31(11), 2150162 (2021). https://doi.org/10.1142/S0218127421501625

    Article  MathSciNet  MATH  Google Scholar 

  20. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press, Oxford (1998)

    Book  Google Scholar 

  21. Nayfeh, A.: Perturbation Methods. Wiley, Hoboken (1973)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their invaluable suggestions. This work was supported by the Natural Science Foundation of Shandong Province of China (ZR2021MA016).

Author information

Authors and Affiliations

Authors

Contributions

LW wrote the main manuscript text and YB gave instructional advice. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yuzhen Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Expression for P in Sect. 3.2 Substituting perturbation solution (3.1) and (3.2) into Eqs. (2.10) and (2.11) in the form of

$$\begin{aligned} X&=X_0+\lambda X_1+\lambda ^2 X_2+O(\lambda ^3),\\ Y&=Y_0+\lambda Y_1+\lambda ^2 Y_2+O(\lambda ^3), \end{aligned}$$

we have

$$\begin{aligned}&[\ddot{X_0}+\lambda \ddot{X_1}+\lambda ^2\ddot{X_2}+O(\lambda ^3)]+\omega ^2[X_0+\lambda X_1+\lambda ^2 X_2+O(\lambda ^3)]\\&\quad =\lambda [a^2\delta [X_0+\lambda X_1+\lambda ^2 X_2+O(\lambda ^3)]+\delta [\dot{X_0}+\lambda \dot{X_1}+\lambda ^2 \dot{X_2}+O(\lambda ^3)]\\&\qquad +\frac{2b}{a}[X_0+\lambda X_1+\lambda ^2 X_2+O(\lambda ^3)][\dot{X_0}+\lambda \dot{X_1}+\lambda ^2 \dot{X_2}+O(\lambda ^3)]\\&\qquad +2a([\dot{X_0}+\lambda \dot{X_1}+\lambda ^2 \dot{X_2}+O(\lambda ^3)][Y_0+\lambda Y_1+\lambda ^2 Y_2+O(\lambda ^3)]\\&\qquad +[X_0+\lambda X_1+\lambda ^2 X_2+O(\lambda ^3)][\dot{Y_0}+\lambda \dot{Y_1}+\lambda ^2 \dot{Y_2}+O(\lambda ^3)])\\&\qquad +2[X_0+\lambda X_1+\lambda ^2 X_2+O(\lambda ^3)][\dot{X_0}+\lambda \dot{X_1}+\lambda ^2 \dot{X_2}+O(\lambda ^3)]\nonumber \\&\qquad [Y_0+\lambda Y_1+\lambda ^2 Y_2+O(\lambda ^3)]\\&\qquad +[X_0+\lambda X_1+\lambda ^2 X_2+O(\lambda ^3)]^2[\dot{Y_0}+\lambda \dot{Y_1}+\lambda ^2 \dot{Y_2}+O(\lambda ^3)]]. \end{aligned}$$

To make it easier to find the second order perturbation equation for X to converge, we write the above equation as

$$\begin{aligned}&({\ddot{X}}_0+\lambda {\ddot{X}}_1+\lambda ^2{\ddot{X}}_2)+\omega ^2(X_0+\lambda X_1+\lambda ^2 X_2)+O(\lambda ^3)\nonumber \\&\quad =\lambda [a^2\delta (X_0+\lambda X_1)+\delta ({\dot{X}}_0+\lambda {\dot{X}}_1)+\frac{2b}{a}(X_0+\lambda X_1)({\dot{X}}_0+\lambda {\dot{X}}_1)\nonumber \\&\qquad +2a[({\dot{X}}_0+\lambda {\dot{X}}_1)(Y_0+\lambda Y_1) +(X_0+\lambda X_1)({\dot{Y}}_0+\lambda {\dot{Y}}_1)]\nonumber \\&\qquad +2(X_0+\lambda X_1)({\dot{X}}_0+\lambda {\dot{X}}_1)(Y_0+\lambda Y_1) +(X_0+\lambda X_1)^2({\dot{Y}}_0+\lambda {\dot{Y}}_1)]\nonumber \\&\quad =\lambda [a^2\delta X_0+\delta {\dot{X}}_0+\frac{2b}{a}X_0{\dot{X}}_0+2a({\dot{X}}_0Y_0+X_0{\dot{Y}}_0)+2X_0{\dot{X}}_0Y_0+X_0^2{\dot{Y}}_0]\nonumber \\&\qquad +\lambda ^2[a^2\delta X_1+\delta {\dot{X}}_1+\frac{2b}{a}(X_0{\dot{X}}_1+X_1{\dot{X}}_0)\nonumber \\&\qquad +2a[(\dot{X}_0Y_1+\dot{X}_1Y_0)+(X_0\dot{Y}_1+X_1\dot{Y}_0)]\nonumber \\&\qquad +2(X_0\dot{X}_0Y_1+X_1\dot{X}_0Y_0+X_0\dot{X}_1Y_0)+X_0^2\dot{Y}_1+2X_0X_1\dot{Y}_0]. \end{aligned}$$
(5.1)

Comparing the coefficients of \(\lambda ^0\), \(\lambda ^1\) and \(\lambda ^2\) of both sides of Eq. (5.1), we can obtain the zeroth order, first order and second order perturbation equations for X respectively

$$\begin{aligned} \lambda ^0:\quad \ddot{X_0}+\omega ^2 X_0&=0, \end{aligned}$$
(5.2)
$$\begin{aligned} \lambda ^1:\quad {\ddot{X}}_1+\omega ^2X_1&=a^2\delta X_0+\delta {\dot{X}}_0+\frac{2b}{a}X_0{\dot{X}}_0\nonumber \\&\quad +2a({\dot{X}}_0Y_0+X_0{\dot{Y}}_0)+2X_0{\dot{X}}_0Y_0+X_0^2{\dot{Y}}_0,\end{aligned}$$
(5.3)
$$\begin{aligned} \lambda ^2:\quad {\ddot{X}}_2+\omega ^2X_2&=a^2\delta X_1+\delta {\dot{X}}_1+\frac{2b}{a}(X_0{\dot{X}}_1+X_1{\dot{X}}_0)\end{aligned}$$
(5.4)
$$\begin{aligned}&\quad +2a[(\dot{X}_0Y_1+\dot{X}_1Y_0)+(X_0\dot{Y}_1+X_1\dot{Y}_0)]\nonumber \\&\quad +2(X_0\dot{X}_0Y_1+X_1\dot{X}_0Y_0+X_0\dot{X}_1Y_0)+X_0^2\dot{Y}_1+2X_0X_1\dot{Y}_0. \end{aligned}$$
(5.5)

Taking direct derivatives for (3.3), (3.4), (3.10) and (3.18), we obtain \({\dot{X}}_0\), \({\dot{Y}}_0\), \({\dot{X}}_1\) and \({\dot{Y}}_1\), whose expressions are

$$\begin{aligned} X_0&=A\cos \alpha ,\\ {\dot{X}}_0&=-\omega A\sin \alpha , \\ Y_0&=-\frac{\omega A}{a^2}\sin \alpha -A\cos \alpha ,\\ {\dot{Y}}_0&=-\frac{\omega ^2A}{a^2}\cos \alpha +\omega A\sin \alpha , \\ X_1&=\frac{B_1}{2\omega }t\sin \alpha -\frac{A_1}{2\omega }t\cos \alpha +\frac{A_1}{4\omega ^2}\sin \alpha +\frac{B_1}{4\omega ^2}\cos \alpha \\&\quad -\frac{C_1}{3\omega ^2}\sin 2\alpha -\frac{D_1}{3\omega ^2}\cos 2\alpha -\frac{E_1}{8\omega ^2}\sin 3\alpha -\frac{F_1}{8\omega ^2}\cos 3\alpha ,\\ {\dot{X}}_1&=\frac{B_1}{2\omega }\sin \alpha -\frac{A_1}{2\omega }\cos \alpha +\frac{B_1}{2}t\cos \alpha +\frac{A_1}{2}t\sin \alpha \\&\quad -\frac{2C_1}{3\omega }\cos 2\alpha +\frac{2D_1}{3\omega }\sin 2\alpha -\frac{3E_1}{8\omega }\cos 3\alpha +\frac{3F_1}{8\omega }\sin 3\alpha ,\\ Y_1&=\frac{B_2}{2\omega }t\sin \alpha -\frac{A_2}{2\omega }t\cos \alpha \frac{A_2}{4\omega ^2}\sin \alpha +\frac{B_2}{4\omega ^2}\cos \alpha \\&\quad -\frac{C_2}{3\omega ^2}\sin 2\alpha -\frac{D_2}{3\omega ^2}\cos 2\alpha -\frac{E_2}{8\omega ^2}\sin 3\alpha -\frac{F_2}{8\omega ^2}\cos 3\alpha +\frac{G_2}{\omega ^2},\\ {\dot{Y}}_1&=\frac{B_2}{2\omega }\sin \alpha -\frac{A_2}{2\omega }\cos \alpha +\frac{B_2}{2}t\cos \alpha +\frac{A_2}{2}t\sin \alpha \\&\quad -\frac{2C_2}{3\omega }\cos 2\alpha +\frac{2D_2}{3\omega }\sin 2\alpha -\frac{3E_2}{8\omega }\cos 3\alpha +\frac{3F_2}{8\omega }\sin 3\alpha ,\\ \end{aligned}$$

wherein \(\alpha =\omega t+\theta \). Substituting \(X_0,\,{\dot{X}}_0,\,Y_0,\,{\dot{Y}}_0,\,X_1,\,{\dot{X}}_1,\,Y_1,\,{\dot{Y}}_1\) into the second order perturbation Eq. (5.5) i.e. (3.20) and simplifying with Maple yields the coefficient P of \(\sin \alpha \), see (3.22).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Bai, Y. Estimation of the Boundary of the Limit Cycle of Brusselator Oscillators by the Renormalization Group Method. Qual. Theory Dyn. Syst. 22, 145 (2023). https://doi.org/10.1007/s12346-023-00843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00843-7

Keywords

Navigation