Skip to main content
Log in

Qualitative Behaviour of a Caputo Fractional Differential System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this article, we investigate a new system of fractional differential equations with integral boundary conditions. The proposed problem contains Caputo fractional derivative operators, integer derivatives and Riemann integral boundary values. We get the existence and uniqueness of solutions for the new system of fractional differential equations based on a fixed point theorem of increasing \(\phi \)-(he)-concave operators. The results show that the unique solution exists in a given set and can be approximated by making an iterative sequence for any initial point in the given set. Further, an example is given to illustrate the effectiveness and applicability of our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chandok, S., Sharma, R.K., Radenović, S.: Multivalued problems via orthogonal contraction mappings with application to fractional differential equation. J. Fixed Point Theory Appl. 23(2), 14 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Abdelhedi, W.: Fractional differential equations with a \(\psi \)-Hilfer fractional derivative. Comput. Appl. Math. 40(2), 53 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Baleanu, D., Ghassabzade, F.A., Nieto, J.J., Jajarmi, A.: On a new and generalized fractional model for a real cholera outbreak. Alex. Eng. J. 61, 9175–9186 (2022)

    Google Scholar 

  4. Jajarmi, A., Baleanu, D., Sajjadi, S.S., Nieto, J.J.: Analysis and some applications of a regularized \(\psi \)-Hilfer fractional derivative. J. Comput. Appl. Math. 415, 114476 (2022)

    MathSciNet  MATH  Google Scholar 

  5. Jajarmi, A., Baleanu, D., Zarghami Vahid, K., Mohammadi Pirouz, H., Asad, J.H.: A new and general fractional Lagrangian approach: a capacitor microphone case study. Results Phys. 31, 104950 (2021)

    Google Scholar 

  6. Erturk, V.S., Godwe, E., Baleanu, D., Kumar, P., Asad, J., Jajarmi, A.: Novel fractional-order Lagrangian to describe motion of beam on nanowire. Acta Phys. Pol. A 3(140), 265–272 (2021)

    Google Scholar 

  7. Ajeel, M.S., Gachpazan, M., Soheili, A.: Solving a system of nonlinear fractional partial differential equations using the Sinc–Muntz collocation method. Nonlinear Dyn. Syst. Theory. 20(2), 119–131 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Abbas, S., Al Arifi, N., Benchohra, M., Henderson, J.: Coupled Hilfer and Hadamard random fractional differential systems with finite delay in generalized Banach spaces. Differ. Equ. Appl. 12(4), 337–353 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Zhai, C., Jiang, R.: Unique solutions for a new coupled system of fractional differential equations. Adv. Differ. Equ. 2018, 1 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Zhai, C., Zhu, X.: Unique solution for a new system of fractional differential equations. Adv. Differ. Equ. 2019, 394 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Yang, C., Zhai, C., Zhang, L.: Local uniqueness of positive solutions for a coupled system of fractional differential equations with integral boundary conditions. Adv. Differ. Equ. 2017, 282 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier Science B.V, Amsterdam (2006)

    MATH  Google Scholar 

  13. Rabbani, M., Das, A., Hazarika, B., Arab, R.: Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations. Chaos Soliton. Fract. 140, 110221 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Ahmad, B., Ntouyas, S., Alsaedi, A.: On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Soliton. Fract. 83, 234–241 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Xu, J., Wei, Z., O’Regan, D.: Infinitely many solutions for fractional Schrodinger–Maxwell equations. J. Appl. Anal. Comput. 9(3), 1165–1182 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Yang, C.: Existence and uniqueness of positive solutions for boundary value problems of a fractional differential equation with a parameter. Hacet. J. Math. Stat. 44(3), 665–673 (2015)

    MathSciNet  Google Scholar 

  17. Wang, G., Pei, K., Chen, Y.: Stability analysis of nonlinear Hadamard fractional differential system. J. Franklin. I(356), 6538–6546 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Wang, J., Zada, A., Waheed, H.: Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value problem. Math. Methods Appl. Sci. 42, 6706–6732 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Wang, W.: Properties of Green’s function and the existence of different types of solutions for nonlinear fractional BVP with a parameter in integral boundary conditions. Bound. Value Probl. 2019, 76 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Zhang, L., Ahmad, B., Wang, G., Agarwal, R.P.: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. App. Math. 249, 51–56 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Zhai, C., Xu, L.: Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter. Commun. Nonlinear Sci. Numer. Simul. 19, 2820–2827 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Zhai, C., Wang, W.: Solutions for a system of Hadamard fractional differential equations with integral conditions. Numer. Funct. Anal. Opt. 41(2), 209–229 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Santra, S., Mohapatra, J.: Analysis of the L1 scheme for a time fractional parabolic-elliptic problem involving weak singularity. Math. Methods Appl. Sci. 44(2), 1529–1541 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Santra, S., Mohapatra, J.: A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type. J. Comput. Appl. Math. 400, 113746, 13 (2022)

  25. Panda, A., Santra, S., Mohapatra, J.: Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations, J. Appl. Math. Comput. 2021 (2021)

  26. Baitiche, Z., Derbazi, C., Benchohra, M., Nieto, J.J.: Monotone iterative technique for a new class of nonlinear sequential fractional differential equations with nonlinear boundary conditions under the \(\psi \)-Caputo operator. Mathematics 10(7), 1173 (2022)

    Google Scholar 

  27. Redhwan, S.S., Shaikh, S.L., Abdo, M.S.: Caputo-Katugampola type implicit fractional differential equation with two-point anti-periodic boundary conditions. Results Nonlinear Anal. 5(1), 1–28 (2022)

    Google Scholar 

  28. Redhwan, S.S., Shaikh, S.L., Abdo, M.S.: Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type. AIMS Math. 5(4), 3714–3730 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Derbazi, C., Hammouche, H., Benchohra, M.: Weak solutions for some nonlinear fractional differential equations with fractional integral boundary conditions in Banach spaces. J. Nonlinear Funct. Anal. 2019, 7 (2019)

    Google Scholar 

  30. Derbazi, C., Baitiche, Z., Benchohra, M.: Cauchy problem with \(\psi \)-Caputo fractional derivative in Banach spaces. Adv. Theory Nonlinear Anal. Appl. 4(4), 349–360 (2020)

    Google Scholar 

  31. Hammad, H.A., Rashwan, R.A., Noeiaghdam, S.: Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions. J. Vib. Control 29(1–2), 1–16 (2023)

    Google Scholar 

  32. Amiri, P., Samei, M.E.: Existence of Urysohn and Atangana-Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators. Chaos Soliton. Fract. 165(2), 112822 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Etemad, S., Iqbal, I., Samei, M.E., Rezapour, S., Alzabut, J.: Weerawat Sudsutad and Izzet Goksel, Some inequalities on multi-functions for applying fractional Caputo-Hadamard jerk inclusion system. J. Ineq. Appl. 2022, 84 (2022)

    MATH  Google Scholar 

  34. Eswari, R., Alzabut, J., Samei, M.E., Zhou, H.: On periodic solutions of a discrete Nicholson’s dual system with density-dependent mortality and harvesting terms. Adv. Differ. Equ. 2021, 360 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Subramanian, M., Alzabut, J., Baleanu, D., Samei, M.E., Zada, A.: Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions. Adv. Differ. Equ. 2021, 267 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Adjimi, N., Boutiara, A., Samei, M.E., Etemad, S., Rezapour, S., Kaabar, M.K.A.: On solutions of a hybrid generalized Caputo-type problem via the measure of non-compactness in the generalized version of Darbo’s theorem. J. Ineq. Appl. 2023, 34 (2023)

    Google Scholar 

  37. Sarwar, S., Zahid, M.A., Iqbal, S.: Mathematical study of fractional-order biological population model using optimal homotopy asymptotic method. Int. J. Biomath. 9(6), 1650081 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Boutiara, A., Kaabar, M.K.A., Siri, Z., Samei, M.E., Yue, X.: Investigation of the generalized proportional Langevin and Sturm–Liouville fractional differential equations via variable coefficients and antiperiodic boundary conditions with a control theory application arising from complex networks. Math. Probl. Eng. 2022, 7018170 (2022)

    Google Scholar 

  39. Boutiara, A., Benbachir, M., Alzabut, J., Samei, M.E.: Monotone iterative and upper-lower solution techniques for solving the nonlinear \(\psi \)-Caputo fractional boundary value problem. Fractal Fract. 5, 194 (2021)

    Google Scholar 

  40. Boutiara, A., Benbachir, M., Kaabar, M.K.A., Martínez, F., Samei, M.E., Kaplan, M.: Explicit iteration and unbounded solutions for fractional \(q\)-difference equations with boundary conditions on an infinite interval. J. Ineq. Appl. 2022, 29 (2022)

    MathSciNet  MATH  Google Scholar 

  41. Boutiara, A., Benbachir, M.: Existence and uniqueness results to a fractional \(q\)-difference coupled system with integral boundary conditions via topological degree theory. Int. J. Nonlinear Anal. Appl. 13(1), 3197–3211 (2022)

    Google Scholar 

  42. Zhai, C., Li, W.: \(\varphi \)-\((h, e)\)-concave operators and applications. J. Math. Anal. Appl. 454, 571–584 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Guezane-Lakoud, A., Khaldi, R., Boucenna, D., Nieto, J.J.: On a multipoint fractional boundary value problem in a fractional Sobolev space. Differ. Equ. Dyn. Sys. 30, 659–673 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, X., Liu, Z., Peng, Z., He, Y., Wei, L.: The right equivalent integral equation of impulsive Caputo fractional- order system of order \(\varepsilon \in (1, 2)\). Fractal Fract. 7, 37 (2023)

    Google Scholar 

  45. Slimane, I., Nazir, G., Nieto, J.J., Yaqoob, F.: Mathematical analysis of Hepatitis C Virus infection model in the framework of non-local and non-singular kernel fractional derivative. Int. J. Biomath. 16(1), 2250064 (2023)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that the study was realized in collaboration with the same responsibility. Ruixiong Fan and Nan Yan wrote the main manuscript text . Chen Yang and Chengbo Zhai prepared Figures 1-2. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chengbo Zhai.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, R., Yan, N., Yang, C. et al. Qualitative Behaviour of a Caputo Fractional Differential System. Qual. Theory Dyn. Syst. 22, 143 (2023). https://doi.org/10.1007/s12346-023-00836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00836-6

Keywords

Mathematics Subject Classification

Navigation