Skip to main content
Log in

Complex Dynamics for an Immunosuppressive Infection Model with Virus Stimulation Delay and Nonlinear Immune Expansion

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This work brings nonlinear Beddington–DeAngelis immune expansion and virus stimulation delay into a classical immunosuppressive infection model developed by Komarova et al. (Proc Natl Acad Sci USA 100(4):1855–1860, 2003) to seek for the effective strategies in realizing the “functional cure” goal with sustained immunity. Compared with the classical model, stability analysis indicates that the nonlinear immune expansion brings about qualitative changes in dynamic features, and new immune control equilibrium appears even under the weak viral inhibitory effects. Global stability analysis for the model without delay shows that the unique local stable equilibrium is also globally asymptotically stable, and it just exhibits bistability dynamics and saddle-node bifurcation. While the virus stimulation delay induces plenty of complex dynamical features, including Hopf bifurcation, homoclinic, heteroclinic and singular closed orbits, sustained and transient oscillations. Numerical investigation reveals that a reduction in the two key parameters involved in the nonlinear immune expansion (i.e., immune competition intensity and virus inhibition intensity) can lengthen the bistable interval and expand the virus-control region, which enables the model to more readily stabilize at either an immune control equilibrium or a periodic orbit, achieving sustained immunity. Moreover, several strategies including the drug therapies targeted at the reduction in the two key parameters and the delay, could effectively shorten therapy duration, as well as the implementation of the weak intensity of therapy still can realize sustained immunity if the delay remains relatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barber, D.L., Wherry, E.J., Masopust, D., Zhu, B., Allison, J.P., Sharpe, A.H., Freeman, G.L., Ahmed, R.: Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439(7077), 682–687 (2006)

    Article  Google Scholar 

  2. Wijaya, R.S., Read, S.A., Selvamani, S.P., Schibeci, S., Azardaryany, M.K., Ong, A., van der Poorten, D., Lin, R., Douglas, M.W., George, J., Ahlenstiel, G.: Hepatitis C virus eradication with interferon free, DAA-based therapy results in KLRG1+, hepatitis C virus-specific memory natural killer cells. J. Infect. Dis. 223(7), 1183–1195 (2021)

    Article  Google Scholar 

  3. Davenport, M.P., Khoury, D.S., Cromer, D., Lewin, S.R., Kelleher, A.D., Kent, S.J.: Functional cure of HIV: the scale of the challenge. Nat. Rev. Immunol. 19(1), 45–54 (2019)

    Article  Google Scholar 

  4. Meng, Z., Chen, Y., Lu, M.: Advances in targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection. Front. Immunol. 10, 3127 (2020)

    Article  Google Scholar 

  5. Autran, B., Descours, B., Avettand-Fenoel, V., Rouzioux, C.: Elite controllers as a model of functional cure. Curr. Opin. HIV AIDS 6(3), 181–187 (2011)

    Article  Google Scholar 

  6. Wagner, R., Randolph, J.T., Patel, S.V., et al.: Highlights of the structure-activity relationships of benzimidazole linked pyrrolidines leading to the discovery of the hepatitis C virus NS5A inhibitor pibrentasvir (ABT-530). J. Med. Chem. 61(9), 4052–4066 (2018)

    Article  Google Scholar 

  7. Nath, B.J., Sarmah, H.K., Maurer, H.: An optimal control strategy for antiretroviral treatment of HIV infection in presence of immunotherapy. Qual. Theory. Dyn. Syst. 21(2), 1–26 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sáez-Cirión, A., Bacchus, C., Hocqueloux, L., et al.: Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLOS. Pathog. 9(3), e1003211 (2013)

    Article  Google Scholar 

  9. Deeks, S.G., Walker, B.D.: Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27(3), 406–416 (2007)

    Article  Google Scholar 

  10. Browne, C.J., Smith, H.L.: Dynamics of virus and immune response in multi-epitope network. J. Math. Biol. 77(6), 1833–1870 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Prosperi, M.C.F., D’Autilia, R., Incardona, F., De Luca, A., Zazzi, M., Ulivi, G.: Stochastic modelling of genotypic drug-resistance for human immunodeficiency virus towards long-term combination therapy optimization. Bioinformatics 25(8), 1040–1047 (2009)

    Article  Google Scholar 

  12. Rife Magalis, B., Autissier, P., Williams, K.C., Chen, X., Browne, C., Salemi, M.: Predator-prey Dynamics of intra-host simian immunodeficiency virus evolution within the untreated host. Front. Immunol. 12, 709962 (2021)

    Article  Google Scholar 

  13. Komarova, N.L., Barnes, E., Klenerman, P., Wodarz, D.: Boosting immunity by antiviral drug therapy: a simple relationship among timing, efficacy, and success. Proc. Natl. Acad. Sci. USA 100(4), 1855–1860 (2003)

    Article  Google Scholar 

  14. Wang, S., Xu, F.: Thresholds and bistability in virus-immune dynamics. Appl. Math. Lett. 78, 105–111 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, S., Li, H., Xu, F.: Monotonic and nonmonotonic immune responses in viral infection systems. Discrete Contin. Dyn. Syst. Ser. B 27(1), 141–165 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, S., Xu, F., Rong, L.: Bistability analysis of an HIV model with immune response. J. Biol. Syst. 25(4), 677–695 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, S., Xu, F.: Analysis of an HIV model with post-treatment control. J. Appl. Anal. Comput. 10(2), 667–685 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Wodarz, D., Nowak, M.A.: Immune responses and viral phenotype: do replication rate and cytopathogenicity influence virus load? Comput. Math. Methods. Med. 2(2), 113–127 (2000)

    MATH  Google Scholar 

  19. De Boer, R.J.: Understanding the failure of CD8+ T-cell vaccination against simian/human immunodeficiency virus. J. Virol. 81(6), 2838–2848 (2007)

    Article  Google Scholar 

  20. Wodarz, D.: Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology. Springer, New York (2007)

    Book  MATH  Google Scholar 

  21. De Boer, R.J., Perelson, A.S.: Towards a general function describing T cell proliferation. J. Theor. Biol. 175(4), 567–576 (1995)

    Article  Google Scholar 

  22. De Boer, R.J., Perelson, A.S.: Target cell limited and immune control models of HIV infection: a comparison. J. Theor. Biol. 190(3), 201–214 (1998)

    Article  Google Scholar 

  23. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340 (1975)

    Article  Google Scholar 

  24. Bairagi, N., Adak, D.: Dynamics of cytotoxic T-lymphocytes and helper cells in human immunodeficiency virus infection with Hill-type infection rate and sigmoidal CTL expansion. Chaos Solitons Fractals 103, 52–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang, C., Wang, W.: Complete classification of global dynamics of a virus model with immune responses. Discrete Contin. Dyn. Syst. Ser. B 19(4), 1087 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Shu, H., Wang, L., Watmough, J.: Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model. J. Math. Biol. 68(1), 477–503 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shu, H., Wang, L.: Joint impacts of therapy duration, drug efficacy and time lag in immune expansion on immunity boosting by antiviral therapy. J. Biol. Syst. 25(1), 105–117 (2017)

    Article  MATH  Google Scholar 

  28. Li, J., Ma, X., Li, J., Zhang, D.: Dynamics of a chronic virus infection model with viral stimulation delay. Appl. Math. Lett. 122, 107547 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Z., Wang, L., Tan, R.: Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response. Discrete Contin. Dyn. Syst. Ser. B 27(5), 2767 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chun, T.W., Stuyver, L., Mizell, S.B., Ehler, L.A., Mican, J.A.M., Baseler, M., Lloyd, A.L., Nowak, M.A., Fauci, A.S., Info, A.: Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 94(24), 13193–13197 (1997)

    Article  Google Scholar 

  31. Lewin, S.R., Ribeiro, R.M., Walters, T., Lau, G.K., Bowden, S., Locarnini, S., Perelson, A.S.: Analysis of hepatitis B viral load decline under potent therapy: complex decay profiles observed. Hepatology 34(5), 1012–1020 (2001)

    Article  Google Scholar 

  32. Bekkering, F.C., Stalgis, C., McHutchison, J.G., Brouwer, J.T., Perelson, A.S.: Estimation of early hepatitis C viral clearance in patients receiving daily interferon and ribavirin therapy using a mathematical model. Hepatology 33(2), 419–423 (2001)

    Article  Google Scholar 

  33. Johansen, P., Storni, T., Rettig, L., et al.: Antigen kinetics determines immune reactivity. Proc. Natl. Acad. Sci. USA 105(13), 5189–5194 (2008)

    Article  Google Scholar 

  34. Nathanson, N.: Viral Pathogenesis and Immunity, 2nd edn. Academic Press, London (2008)

    Google Scholar 

  35. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1991)

    Book  MATH  Google Scholar 

  36. Conway, J.M., Perelson, A.S.: Post-treatment control of HIV infection. Proc. Natl. Acad. Sci. USA 112(17), 5467–5472 (2015)

    Article  Google Scholar 

  37. Martcheva, M.: An Introduction to Mathematical Epidemiology. Springer, New York (2015)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported partially by National Natural Science Foundation of China (Nos. 12001178, 12271147) and Innovative Training Program for College Students of Hubei Minzu University (No. S202010517021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianwen Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, L., Liu, Z. et al. Complex Dynamics for an Immunosuppressive Infection Model with Virus Stimulation Delay and Nonlinear Immune Expansion. Qual. Theory Dyn. Syst. 22, 118 (2023). https://doi.org/10.1007/s12346-023-00814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00814-y

Keywords

Navigation