Skip to main content
Log in

A Study on Non-autonomous Second Order Evolution Equations with Nonlocal Conditions

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This article deals with the nonlocal problem to a class of nonlinear non-autonomous second order integro-differential evolution equation of mixed type via measure of noncompactness in infinite-dimensional Banach spaces. Based on the fixed point theorem with respect to convex-power condensing operator and a new estimation technique of the measure of noncompactness combined with the theory of evolution families to investigate the existence of mild solutions for a class of nonlinear non-autonomous second order integro-differential evolution equations with nonlocal condition in infinite-dimensional Banach spaces, we obtained the existence of mild solutions under the weak situation that the nonlinear function satisfy some appropriate growth condition and non-compactness measure condition. Our results generalize and improve some previous results on this topic, since the condition of uniformly continuity of the nonlinearity is not required, and also the strong restriction on the constants in the condition of noncompactness measure is completely deleted. Finally, an example is given to show the applications of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

My manuscript has no associate data.

References

  1. Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254(5), 1342–1372 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Arendt, W., Batty, C.J.K.: Almost periodic solutions of first and second order Cauchy problems. J. Differ. Equ. 137(2), 363–383 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Banas̀, J., Goebel, K.: Measures of noncompactness in Banach spaces. In: Lecture Notes in Pure and Applied Mathematics, vol. 60. Marcel Dekker, New York (1980)

  4. Boucherif, A.: Semilinear evolution inclusions with nonlocal conditions. Appl. Math. Lett. 22, 1145–1149 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40, 11–19 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Byszewski, L.: Strong maximum principles for parabolic nonlinear problems with nonlocal inequalities together with arbitrary functionals. J. Math. Anal. Appl. 156, 457–470 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Byszewski, L.: Theorem about existence and uniqueness of continuous solution of nonlocal problem for nonlinear hyperbolic equation. Appl. Anal. 40, 173–180 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Byszewski, L.: Uniqueness criterion for solution of abstract nonlocal Cauchy problem. J. Appl. Math. Stoch. Anal. 6, 49–54 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Bureau, F.J.: The Cauchy problem for partial differential equations of the second order and the method of ascent. J. Comput. Appl. Math. 4(1), 146–179 (1962)

    MathSciNet  MATH  Google Scholar 

  11. Banas, J., Chlebowicz, A.: On integrable solutions of a nonlinear Volterra integral equation under Carathéodory conditions. Bull. Lond. Math. Soc. 41(6), 1073–1084 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Chen, P., Li, Y.: Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions. Res. Math. 63, 731–744 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Chen, P., Zhang, X., Li, Y.: Cauchy problem for fractional non-autonomous evolution equations. Banach J. Math. Anal. 14, 559–584 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Chen, P., Li, Y., Zhang, X.: Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete Contin. Dyn. Syst. Ser. B 26(3), 1531–1547 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Chen, P., Wang, R., Zhang, X.: Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains. Bull. Sci. Math. 173, 103071 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Chen, P., Li, Y., Zhang, X.: Existence and uniqueness of positive mild solutions for nonlocal evolution equations. Positivity 19, 927–939 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Cabada, A., Khaldi, R.: Existence of solutions of a second order equation defined on unbounded intervals with integral conditions on the boundary. Malaya J. Mat. 09(03), 117–128 (2021)

    MathSciNet  Google Scholar 

  18. Dhage, B.C., Dhage, J.B.: Approximating positive solutions of nonlinear IVPs of ordinary second order hybrid differential equations. Malaya J. Mat. 09(02), 12–19 (2021)

    MathSciNet  Google Scholar 

  19. Dhage, B.C., Dhage, J.B.: Approximating positive solutions of nonlinear BVPs of ordinary second order hybrid differential equations. Malaya J. Mat. 10(02), 110–118 (2022)

    MathSciNet  Google Scholar 

  20. Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces, vol. 293. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  21. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    MATH  Google Scholar 

  22. Diagana, T.: Semilinear Evolution Equations and Their Applications. Springer, Cham (2018)

    MATH  Google Scholar 

  23. Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179, 630–637 (1993)

    MathSciNet  MATH  Google Scholar 

  24. El-Borai, M.M.: The fundamental solutions for fractional evolution equations of parabolic type. J. Appl. Math. Stoch. Anal. 3, 197–211 (2004)

    MathSciNet  MATH  Google Scholar 

  25. El-Borai, M.M., El-Nadi, K.E., El-Akabawy, E.G.: On some fractional evolution equations. Comput. Math. Appl. 59, 1352–1355 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Fitzgibbon, W.E.: Semilinear functional equations in Banach space. J Differ. Equ. 29, 1–14 (1978)

    MathSciNet  MATH  Google Scholar 

  27. Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces. North-Holland Publishing Co., Amsterdam (1985)

    MATH  Google Scholar 

  28. Guo, D.: Solutions of nonlinear integro-differential equations of mixed type in Banach spaces. J. Appl. Math. Simul. 2, 1–11 (1989)

    Google Scholar 

  29. Heinz, H.P.: On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 7, 1351–1371 (1983)

    MathSciNet  MATH  Google Scholar 

  30. Henríquez, H.R.: Existence of solutions of non-autonomous second order functional differential equations with infinite delay. Nonlinear Anal. 74, 3333–3352 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Henríquez, H.R., Poblete, V., Juan, C.P.: Mild solutions of non-autonomous second order problems with nonlocal initial conditions. J. Math. Anal. Appl. 412, 1064–1083 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Henríquez, H.R., Pozo, J.C.: Existence of solutions of abstract non-autonomous second order integro-differential equations. Bound. Value Probl. 2016(1), 1–24 (2016). https://doi.org/10.1186/s13661-016-0675-7

    Article  MathSciNet  MATH  Google Scholar 

  33. Hernández, E.M., Tanaka, S.M.: Global solutions for abstract functional differential equations with nonlocal conditions. Electron. J. Qualtiy 50, 1–8 (2009)

    MATH  Google Scholar 

  34. Han, X., Wang, M.: General decay estimate of energy for the second order evolution equation with memory. Acta Appl. Math. 110(1), 195–207 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Kozak, M.: A fundamental solution of a second order differential equation in a Banach space. Univ. Lagel. Acta. Math. 32, 275–289 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Lakshmikantham, V., Leela, S.: Nonlinear Differential Equations in Abstract Spaces. Pergamon Press, New York (1981)

    MATH  Google Scholar 

  37. Karczewska, A., Lizama, C.: Stochastic Volterra equations under perturbations. Electron. Commun. Probab. 19(29), 1–14 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Liu, L., Wu, C., Guo, F.: Existence theorems of global solutions of initial value problems for nonlinear integro-differential equations of mixed type in Banach spaces and applications. Comput. Math. Appl. 47, 13–22 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Liu, L., Guo, F., Wu, C., Wu, Y.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces. J. Math. Anal. Appl. 309, 638–649 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Liu, K.: Stability of Infinite Dimensional Stochastic Differential Equations with Applications. Chapman and Hall/CRC, London (2005)

    Google Scholar 

  41. Li, Y.: Existence of solutions of initial value problem for abstract semilinear evolution equations. Acta Math. Sin. 48, 1089–1094 (2005). ((in Chinese))

    MathSciNet  MATH  Google Scholar 

  42. Liu, Y.J., Liu, Z.H., Papageorgiou, N.S.: Sensitivity analysis of optimal control problems driven by dynamic history-dependent variational–hemivariational inequalities. J. Differ. Equ. 342, 559–595 (2023)

    MathSciNet  MATH  Google Scholar 

  43. Li, X.W., Liu, Z.H., Papageorgiou, N.S.: Solvability and pullback attractor for a class of differential hemivariational inequalities with its applications. Nonlinearity 36, 1323–1348 (2023)

    MathSciNet  MATH  Google Scholar 

  44. Liu, Z.H., Motreanu, D., Zeng, S.D.: Generalized penalty and regularization method for differential variational–hemivariational inequalities. SIAM J. Optim. 31(2), 1158–1183 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Luong, V.T., Tung, N.T.: Decay mild solutions for elastic systems with structural damping involving nonlocal conditions. Vestnik St. Petersb. Univ. Math. 50, 55–67 (2017)

    MATH  Google Scholar 

  46. Luong, V.T., Tung, N.T.: Exponential decay for elastic systems with structural damping and infinite delay. Appl. Anal. 99, 13–28 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Luong, V.: Mild solutions of the nonlocal Cauchy problem for second order evolution equations with memory. Electron. J. Qual. Theory Differ. Equ. 20, 1 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Miller, R.K.: An integro-differential equation for rigid heat conductors with memory. J. Math. Anal. Appl. 66(2), 313–332 (1978)

    MathSciNet  MATH  Google Scholar 

  49. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    MATH  Google Scholar 

  50. Pang, X., Li, X.W., Liu, Z.H.: Decay mild solutions of Hilfer fractional differential variational–hemivariational inequalities. Nonlinear Anal. Real World Appl. 71, 103834 (2023)

    MathSciNet  Google Scholar 

  51. Ren, Y., Hou, T., Sakthivel, R., Cheng, X.: A note on the second-order non-autonomous neutral stochastic evolution equations with infinite delay under Carathéodory conditions. Appl. Math. Comput. 232, 658–665 (2014). https://doi.org/10.1016/j.amc.2014.01.091

    Article  MathSciNet  MATH  Google Scholar 

  52. Shi, H.B., Li, W.T., Sun, H.R.: Existence of mild solutions for abstract mixed type semilinear evolution equations. Turk. J. Math. 35, 457–472 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Sun, J., Zhang, X.: The fixed point theorem of convex-power condensing operator and applications to abstract semilinear evolution equations. Acta Math. Sin. 48, 439–446 (2005). ((in Chinese))

    MathSciNet  MATH  Google Scholar 

  54. Shu, X.B., Wang, Q.: The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order \(1<\alpha <2\). Comput. Math. Appl. 64, 2100–2110 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Sivasankaran, S., Arjunan, M.M., Vijayakumar, V.: Existence of global solutions for impulsive functional differential equations with nonlocal conditions. J. Nonlinear Sci. Appl. 4, 102–114 (2011)

    MathSciNet  MATH  Google Scholar 

  56. Tatar, N.E.: Mild solutions for a problem involving fractional derivatives in the nonlinearity and in the non-local conditions. Adv. Differ. Equ. (2011). https://doi.org/10.1186/1687-1847-2011-18

    Article  MathSciNet  MATH  Google Scholar 

  57. Travis, C.C., Webb, G.F.: Compactness, regularity, and uniform continuity properties of strongly continuous cosine families. Houston J. Math. 3, 555–567 (1977)

    MathSciNet  MATH  Google Scholar 

  58. Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. 32, 75–96 (1978)

    MathSciNet  MATH  Google Scholar 

  59. Travis, C.C., Webb, G.F.: Second order differential equations in Banach space. In: Nonlinear Equations in Abstract Spaces. Academic Press, New York (1978)

  60. Tanabe, H.: Functional Analytic Methods for Partial Differential Equations. Marcel Dekker, New York (1997)

    MATH  Google Scholar 

  61. Vasilev, V.V., Piskarev, S.I.: Differential equations in Banach spaces. II. Theory of cosine operator functions. J. Math. Sci. (N.Y.) 122, 3055–3174 (2004)

    MathSciNet  MATH  Google Scholar 

  62. Vrabie, I.I.: Existence for nonlinear evolution inclusions with nonlocal retarded initial conditions. Nonlinear Anal. 74, 7047–7060 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Wang, R.N., Chen, D.H.: On a class of retarded integro-differential equations with nonlocal initial conditions. Comput. Math. Appl. 59, 3700–3709 (2010)

    MathSciNet  MATH  Google Scholar 

  64. Wang, R.N., Liu, J., Chen, D.H.: Abstract fractional integro-differential equations involving nonlocal initial conditions in \(\alpha \)-norm. Adv. Differ. Equ. 2011(25), 16 (2011)

    MathSciNet  MATH  Google Scholar 

  65. Wang, J.R., Yan, X., Zhang, X.H., Wang, T.M., Li, X.Z.: A class of nonlocal integro differential equations via fractional derivative and its mild solutions. Opusc. Math. 31, 119–135 (2011)

    MATH  Google Scholar 

  66. Xiao, T., Liang, J.: Existence of classical solutions to nonautonomous nonlocal parabolic problems. Nonlinear Anal. Theory Methods Appl. 63, e225–e232 (2005)

    MATH  Google Scholar 

  67. Xue, X.: Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces. Electron. J. Differ. Equ. 2005(64), 1–7 (2005)

    MathSciNet  Google Scholar 

  68. Xue, X.: Nonlinear differential equations with nonlocal conditions in Banach spaces. Nonlinear Anal. 63, 575–586 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (11661071, 12061062). Science Research Project for Colleges and Universities of Gansu Province (No. 2022A-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haide Gou.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, H., Li, Y. A Study on Non-autonomous Second Order Evolution Equations with Nonlocal Conditions. Qual. Theory Dyn. Syst. 22, 111 (2023). https://doi.org/10.1007/s12346-023-00812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00812-0

Keywords

Mathematics Subject Classification

Navigation