Skip to main content
Log in

Stationary Distribution and Periodic Solution of a Stochastic n-Species Gilpin–Ayala Competition System with General Saturation Effect and Nonlinear Perturbations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, a generalized n-species Gilpin–Ayala competition system with saturation effect and nonlinear perturbations is proposed and examined. We first develop a new mathematical technique called “stochastic \(\epsilon \)-threshold method”, to tackle the nonlinear perturbations and study the competitive coexistence, which includes the existence of ergodic stationary distribution as well as stochastic positive periodic solution. It should be mentioned that the method can be successfully applied to the species coexistence of other biological models. Then, we establish sufficient conditions for exponential extinction of competing species. Finally, several numerical examples are provided to support our theoretical results and analyze the impact of key parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The manuscript has no associated data.

References

  1. Levin, S.: Community equilibria and stability, and an extension of the competitive exclusion principle. Am. Nat. 104, 413–423 (1970)

    Google Scholar 

  2. Zhang, L., Teng, Z.: N-species non-autonomous Lotka–Volterra competitive systems with delays and impulsive perturbations. Nonlinear Anal.: RWA 12, 3152–3169 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Bartlett, M.S.: On theoretical models for competitive and predatory biological systems. Biometrika 44, 27–42 (1957)

    MathSciNet  MATH  Google Scholar 

  4. Murray, J.D.: Mathematical Biology. Springer, Berlin (2002)

    MATH  Google Scholar 

  5. Golpalsamy, K.: Globally asymptotic stability in a periodic Lotka–Volterra system. J. Austral. Math. Soc. Ser. B. 24, 160–170 (1982)

    MathSciNet  Google Scholar 

  6. Tineo, A.: An iterative scheme for the \(N\)-competing species problem. J. Differ. Equ. 116, 1–15 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Zeeman, M.: Extinction in competitive Lotka–Volterra systems. Proc. Am. Math. Soc. 123, 87–96 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Lian, B., Hu, S.: Asymptotic behaviour of the stochastic Gilpin–Ayala competition models. J. Math. Anal. Appl. 339, 419–428 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Gilpin, M.E., Ayala, F.G.: Global models of growth and competition. Proc. Acad. Sci. Am. 70, 3590–3593 (1973)

    MATH  Google Scholar 

  10. Xu, C., Li, Q., Zhang, T., Yuan, S.: Stability and Hopf bifurcation for a delayed diffusive competition model with saturation effect. Math. Biosci. Eng. 17(6), 8037–8051 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Li, Q., Liu, Z., Yuan, S.: Cross-diffusion induced Turing instability for a competition model with saturation effect. Appl. Math. Comput. 347, 64–77 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Hu, J., Liu, Z., Wang, L., Tan, R.: Extinction and stationary distribution of a competition system with distributed delays and higher order coupled noises. Math. Biosci. Eng. 17(4), 3240–3251 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Ning, W., Liu, Z., Wang, L., Tan, R.: Analysis of a stochastic competitive model with saturation effect and distributed delay. Methodol. Comput. Appl. Prob. 23, 1435–1459 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Springer, Cham (1992)

    MATH  Google Scholar 

  15. Liu, Z., Hu, J.: Incorporating two coupling noises into a nonlinear competitive system with saturation effect. Int. J. Biomath. 13(2), 2050012 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Liu, Z., Wu, J., Tan, R.: Permanence and extinction of an impulsive delay competitive Lotka–Volterra model with periodic coefficients. IMA J. Appl. Math. 74, 559–573 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Tian, B., Yang, L., Chen, X., Zhang, Y.: A generalized stochastic competitive system with Ornstein–Uhlenbeck process. Int. J. Biomath. 14(1), 2150001 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Holling, C.S.: The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959)

    Google Scholar 

  19. Wang, L., Jiang, D.: A note on the stationary distribution of the stochastic chemostat model with general response functions. Appl. Math. Lett. 73, 22–28 (2017)

    MathSciNet  MATH  Google Scholar 

  20. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  21. Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Process. Appl. 97, 95–110 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Qi, H., Meng, X., Hayat, T., Hobiny, A.: Distribution of a stochastic predator–prey model with hunting cooperation. Appl. Math. Lett. 124, 107662 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Zuo, W., Jiang, D., Sun, X., Hayat, T., Alsaedi, A.: Long-time behaviors of a stochastic cooperative Lotka–Volterra system with distributed delay. Physica A 506, 542–559 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Stationary distribution and extinction of a stochastic predator–prey model with herd behavior. J. Frankl. Inst. 355, 8177–8193 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Jiang, D., Ji, C., Li, X., O’Regan, D.: Analysis of autonomous Lotka–Volterra competition systems with random perturbation. J. Math. Anal. Appl. 390, 582–595 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, Q., Jiang, D., Liu, Z., O’Regan, D.: The long time behavior of a predator–prey model with disease in the prey by stochastic perturbation. Appl. Math. Comput. 245, 305–320 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, X., Jiang, D.: Periodic solutions of a stochastic food-limited mutualism model. Methodol. Comput. Appl. Prob. 22, 267–278 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Zu, L., Jiang, D., O’Regan, D., Hayat, T., Ahmad, B.: Ergodic property of a Lotka–Volterra predator-prey model with white noise higher order perturbation under regime switching. Appl. Math. Comput. 330, 93–102 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Han, B., Jiang, D., Hayat, T., Alsaedi, A., Ahmad, B.: Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation. Chaos Solitons Fract. 140, 110238 (2020)

    MathSciNet  Google Scholar 

  30. Lv, X., Meng, X., Wang, X.: Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation. Chaos Solitons Fract. 110, 273–279 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Jiang, D., Wen, X., Zhou, B.: Stationary distribution and extinction of a stochastic two-stage model of social insects with egg cannibalism. Appl. Math. Lett. 132, 108100 (2022)

    MathSciNet  MATH  Google Scholar 

  32. Qi, H., Meng, X.: Threshold behavior of a stochastic predator–prey system with prey refuge and fear effect. Appl. Math. Lett. 113, 106846 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, H., Cai, Y., Fu, S., Wang, W.: Impact of the fear effect in a prey–predator model incorporating a prey refuge. Appl. Math. Comput. 356, 328–337 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Liu, Q., Jiang, D., Hayat, T., Ahmad, B.: Stationary distribution and extinction of a stochastic predator-prey model with additional food and nonlinear perturbation. Appl. Math. Comput. 320, 226–239 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Liu, Q., Jiang, D.: Influence of the fear factor on the dynamics of a stochastic predator–prey model. Appl. Math. Lett. 112, 106756 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Liu, Q., Jiang, D.: Periodic solution and stationary distribution of stochastic predator-prey models with higher-order perturbation. J. Nonlinear Sci. 28, 423–442 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Nguyen, D.H., Yin, G.: Coexistence and exclusion of stochastic competitive Lotka–Volterra models. J. Differ. Equ. 262, 1192–1225 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)

    MATH  Google Scholar 

  39. Zu, L., Jiang, D., O’Regan, D., Ge, B.: Periodic solution for a non-autonomous Lotka–Volterra predator-prey model with random perturbation. J. Math. Anal. Appl. 430, 428–437 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Ji, C., Yang, X., Li, Y.: Permanence, extinction and periodicity to a stochastic competitive model with infinite distributed delays. J. Dyn. Differ. Equ. 33, 135–176 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Huo, H., Li, W.: Periodic solution of a delayed predator–prey system without dominating instantaneous negative feedback. Appl. Math. Comput. 156(3), 871–882 (2004)

    MathSciNet  MATH  Google Scholar 

  42. Zuo, W., Jiang, D.: Stationary distribution and periodic solution for stochastic predator-prey systems with nonlinear predator harvesting. Commun. Nonlinear Sci. Numer. Simul. 36, 65–80 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Hening, A., Nguyen, D.H.: Coexistence and extinction for stochastic Kolmogorov systems. Ann. Appl. Prob. 28(3), 1893–1942 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Nguyen, D.H., Nguyen, N.N., Yin, G.: Stochastic functional Kolmogorov equations, I: persistence. Stoch. Process. Appl. 142, 319–364 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Fu, J., Han, Q., Jiang, D., Yang, Y.: Dynamics of an autonomous Gilpin–Ayala competition model with random perturbation. Int. J. Biomath. 14(3), 2050043 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Song, M., Zuo, W., Jiang, D., Hayat, T.: Stationary distribution and ergodicity of a stochastic cholera model with multiple pathways of transmission. J. Frankl. Inst. 357, 10773–10798 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Maja, V., Niljana, J.: Dynamics of Gilpin–Ayala competition model with random perturbation. Fac. Sci. Math. 24(1), 101–113 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Khasminskii, R.Z.: Stochastic Stability of Differential Equations. Springer, Berlin (2011)

    MATH  Google Scholar 

  49. Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 46, 1155–1179 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Nguyen, D.H., Yin, G., Zhu, C.: Long-term analysis of a stochastic SIRS model with general incidence rates. SIAM J. Appl. Math. 80, 814–838 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Du, N.H., Dieu, N.T., Nhu, N.N.: Conditions for permanence and ergodicity of certain SIR epidemic models. Acta Appl. Math. 160, 81–99 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Zhao, Y., Yuan, S., Ma, J.: Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment. Bull. Math. Biol. 77(7), 1285–1326 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    MathSciNet  MATH  Google Scholar 

  54. Liu, L., Zhu, Q.: Analysis of stochastic Gilpin–Ayala competition system. Math. Prob. Eng. 2014, 637862 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Zhu, P., Wang, X., Li, S., Guo, Y., Wang, Z.: Investigation of epidemic spreading process on multiplex networks by incorporating fatal properties. Appl. Math. Comput. 359, 512–524 (2019)

    MathSciNet  Google Scholar 

  56. Jia, D., Wang, X., Song, Z., Li, X., Jusup, M., Wang, Z.: Evolutionary dynamics drives role specialization in a community of players. J. R. Soc. Interface 17(168), 20200174 (2020)

    Google Scholar 

  57. Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of a stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376, 11–28 (2011)

    MathSciNet  MATH  Google Scholar 

  58. Zhang, X., Jiang, D., Alsaedi, A., Hayat, T.: Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching. Appl. Math. Lett. 59, 87–93 (2016)

    MathSciNet  MATH  Google Scholar 

  59. Han, B., Jiang, D., Zhou, B., Hayat, T., Alsaedi, A.: Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth. Chaos Solitons Fract. 142, 110519 (2021)

    MathSciNet  MATH  Google Scholar 

  60. Zhou, B., Jiang, D., Han, B., Hayat, T.: Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process. Math. Comput. Simul. 196, 15–44 (2022)

    MathSciNet  MATH  Google Scholar 

  61. Saitō, Y.: Prey kills predator: counter-attack success of a spider mite against its specific phytoseiid predator. Exp. Appl. Acarol. 2, 47–62 (1986)

    Google Scholar 

  62. Arsie, A., Kottegoda, C., Shan, C.: A predator–prey system with generalized holling type IV functional response and allee effects in prey. J. Differ. Equ. 309, 704–740 (2022)

    MathSciNet  MATH  Google Scholar 

  63. Tang, B., Xiao, Y.: Bifurcation analysis of a predator–prey model with anti-predator behaviour. Chaos Solitons Fract. 70, 58–68 (2015)

    MathSciNet  MATH  Google Scholar 

  64. Chen, L.: Mathematical Ecological Models and Research Methods. Science Press, Beijing (2021). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11871473) and the Fundamental Research Funds for the Central Universities (No. 22CX03030A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

(I) (Proof of Lemma 2.1): Let \(G(x)=Ax^{\theta }+B-\frac{A\theta }{\theta -\epsilon }\bigl [\frac{B(\theta -\epsilon )}{A\epsilon }\bigr ]^{\frac{\epsilon }{\theta }}x^{\theta -\epsilon }\). By direct calculation, we have

$$\begin{aligned} G'(x)=A\theta x^{\theta -\epsilon -1}\Bigl [x^{\epsilon }-\Bigl (\frac{B(\theta -\epsilon )}{A\epsilon }\Bigr )^{\frac{\epsilon }{\theta }}\Bigr ], \end{aligned}$$

which implies that G(x) has a unique stagnation point \(\overline{x}=(\frac{B(\theta -\epsilon )}{A\epsilon })^{\frac{1}{\theta }}\) on \((0,\infty )\). Thus,

$$\begin{aligned} \inf _{x\in (0,\infty )}G(x)=G(\overline{x})=\frac{B(\theta -\epsilon )}{\epsilon }+B-\frac{B\theta }{\epsilon }=0. \end{aligned}$$

The proof is complete.

(II) (The exponential martingale inequality): Let \(T,\alpha ,\beta \) be any positive numbers and B(t) denote an n-dimensional standard Brownian motion defined on the probability space \( \{\Omega ,\mathscr {F},\{\mathscr {F}_t\}_{t\ge 0},\mathbb {P}\} \). For any \(g=(g_1,\ldots ,g_m)\in L^2(\mathbb {R}_+,\mathbb {R}^{1\times m})\), it then follows

$$\begin{aligned} \mathbb {P}\biggl \{\sup _{0\le t\le T}\biggl [\int _{0}^{t}g(s)dB(s)-\frac{\alpha }{2}\int _{0}^{t}\bigl |g(s)\bigr |^2ds\biggr ]>\beta \biggr \}\le e^{-\alpha \beta }. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Jiang, D. & Zhou, B. Stationary Distribution and Periodic Solution of a Stochastic n-Species Gilpin–Ayala Competition System with General Saturation Effect and Nonlinear Perturbations. Qual. Theory Dyn. Syst. 22, 46 (2023). https://doi.org/10.1007/s12346-023-00743-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00743-w

Keywords

Navigation