Skip to main content
Log in

The Global Phase Space for the 2- and 3-Dimensional Kepler Problems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We determine the foliations of the phase space of four particular integrable Hamiltonian systems obtained from the Kepler problem, namely the sidereal and the synodical Kepler Problem in the plane \({(\mathbb{R}^{2})}\) and in the space \({(\mathbb{R}^{3})}\). These problems differ in their formulation by the choice of the referentials and by the dimension of the phase space. These four Kepler problems have played a main role in Celestial Mechanics. Their importance is justified: First, the study of an integrable problem allow us to obtain information about a non-integrable problem sufficiently close to the integrable one. In fact this is the principle of perturbation theory. Second, from the point of view of the applications, the sidereal is basic for the computation of the planetary ephemerides and the synodical is the limit case of the non-integrable restricted circular 3-body problem when one of the masses of the two primaries tends to zero. We determine the foliations of the phase space of these four Kepler problems by the orbits (i.e. we characterize their global flow), and by fixing one, two or three independent first integrals in involution; of course, at most three for the two spatial problems, and at most two for the two planar problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham R., Marsden J.E.: Foundations of Mechanics. Benjamin, Reading (1978)

    MATH  Google Scholar 

  2. Albouy A.: Integral manifolds of the n-body problem. Invent. Math. 114, 463–488 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold, V.I.: Mathematical Methods of Classical Mechanics. MIR, Moskow (1975, in Russian). Springer, Berlin (1978, in English)

  4. Arnold V.I., Kozlov V.V., Neishtadt A.I.: Dynamical Systems III, Enyclopaedia of Mathematical Sciences. Springer, Berlin (1978)

    Google Scholar 

  5. Birkhoff G.D.: Dynamical Systems. AMS, New York (1927)

    MATH  Google Scholar 

  6. Cabral H.: On the integral manifolds of the n-body problem. Invent. Math. 20, 59–72 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Casasayas J., Llibre J.: Qualitative analysis of the anisotropic Kepler problem. Mem. Am. Math. Soc. 52, 312 (1984)

    MathSciNet  Google Scholar 

  8. Casasayas J., Martinez Alfaro J., Nunes A.: Knots and links in integrable Hamiltonian systems. J. Knot Theory Ramif. 7, 123–153 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Devaney R.: Collision orbits in the anisotropic Kepler problem. Invent. Math. 45, 221–251 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Devaney R.: Singularities in classical mechanics systems. In: Katok, A. (eds) Ergodic Theory and Dynamical Systems I. Proceedings Special Year, Maryland 1979–1980, pp. 211–333. Birkhäuser, Basel (1981)

    Google Scholar 

  11. Easton R.W.: Some topology of 3-body problems. J. Differ. Equ. 10, 371–377 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  12. Easton R.W.: Some topology of n-body problems. J. Differ. Equ. 19, 258–269 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fomenko, A.T.: On typical topological properties of integrable Hamiltonian systems. Izv. Akad. Nauk (SSSR) Ser. Mat. 52, 378–407 (1988); English Transl. in Math. USSR Izv. 32 (1989)

  14. Fomenko, A.T.: Differential equations and applications to problems. In: Francaviglia, M. (ed.) Physics and Mechanics. Mechanics Analysis and Geometry: 200 Years after Lagrange. Elsevier, Amsterdam (1991)

  15. Guillemin V., Pollack A.: Differential Topology. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  16. Hirsch M.W.: Differential Topology. Springer, Berlin (1976)

    MATH  Google Scholar 

  17. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)

  18. Kaplan W.: Topology of the two-body problem. Am. Math. Mon. 49, 316–326 (1942)

    Article  Google Scholar 

  19. Liouville J.: Sur l’integration des équations différentielles de la Dynamique, présentée au Bureau des Longitudes le 29 de juin 1853. J. Math. Pures Appl. 20, 137–138 (1855)

    Google Scholar 

  20. Llibre J.: On the restricted three-body problem when the mass parameter is small. Celest. Mech. 28, 83–105 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Llibre J., Martinez Alfaro J.: Ejection and collision orbits of the spatial restricted three-body problem. Celest. Mech. 35, 113–128 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. Llibre J., Nunes A.: Separatrix surfaces and invariant manifolds of a class of integrable Hamiltonian systems and their perturbations. Mem. Am. Math. Soc. 107, 513 (1994)

    MathSciNet  Google Scholar 

  23. Llibre J., Piñol C.: On the elliptic restricted three-body problem. Celest. Mech. 48, 319–345 (1990)

    Article  Google Scholar 

  24. Llibre, J., Soler, J.: Global flow of the rotating Kepler problem. In: Hamiltonian System and Celestial Mechanics, Advanced Series in Nonlinear Dynamics, vol. 4, pp. 125–140. World Scientific, Singapore (1993)

  25. McCord C.K., Meyer K.R., Wang Q.: The integral manifolds of the three body problem. Mem. Am. Mat. Soc. 132, 628 (1998)

    MathSciNet  Google Scholar 

  26. McGehee R.: A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. J. Differ. Equ. 14, 70–88 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  27. McGehee R.: Triple collision in the collinear three-body problem. Invent. Math. 27, 191–227 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  28. Meyer, K.R., Hall, G.: Introduction to Hamiltonian dynamical systems and the n-body problem. In: Applied Mathematical Sciences, vol. 90. Springer, New York (1992)

  29. Moser J.: Stable and Random Motion in Dynamical Systems. Princeton University Press, Princeton (1973)

    Google Scholar 

  30. Roy A.E.: Orbital Motion. Wiley, New York (1978)

    MATH  Google Scholar 

  31. Smale S.: Topology and Mechanics, I. Invent. Math. 10, 305–331 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  32. Smale S.: Topology and mechanics, II. The planar n-body problem. Invent. Math. 11, 45–64 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sotomayor, J.: Lições de Equações Diferenciais Ordinárias. Projeto Euclides, IMPA, Rio de Janeiro (1979)

  34. Stiefel E.L., Scheifelle G.: Linear and Regular Celestial Mechanics. Springer, Berlin (1971)

    MATH  Google Scholar 

  35. Szebehely V.: Theory of Orbits. Academic Press, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia P. Dantas.

Additional information

M. P. Dantas was supported by a CAPES grant. J. Llibre was supported by a MEC/FEDER grant number MTM2008-03437 and by a CICYT grant number 2009SGR 410.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dantas, M.P., Llibre, J. The Global Phase Space for the 2- and 3-Dimensional Kepler Problems. Qual. Theory Dyn. Syst. 8, 45 (2009). https://doi.org/10.1007/s12346-009-0002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-009-0002-0

Keywords

Mathematics Subject Classification (2000)

Navigation