Skip to main content

Advertisement

Log in

Exploring the complexities of megacystis-microcolon-intestinal hypoperistalsis syndrome: insights from genetic studies

  • Clinical Review
  • Published:
Clinical Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is an uncommon genetic disorder inherited in an autosomal recessive pattern that affects the muscles that line the bladder and intestines. The most common genes associated with MMIHS mutations are ACTG2, LMOD1, MYH11, MYL9, MYLK, and PDCL3. However, the complete genetic landscape of MMIHS still needs to be fully understood. The diagnosis of MMIHS can be challenging. However, advances in prenatal and diagnostic techniques, such as ultrasound and fetal urine analysis, have improved the ability to detect the syndrome early. Targeted next-generation sequencing (NGS) and other diagnostic tests can also diagnose MMIHS. The management of MMIHS involves addressing severe intestinal dysmotility, which often necessitates total parenteral nutrition (TPN), which can lead to complications such as hepatotoxicity and nutritional deficiencies. Multivisceral and intestinal transplantation has emerged as therapeutic options, offering the potential for improved outcomes and enteral autonomy. Understanding the genetic underpinnings of MMIHS is crucial for personalized care. While the prognosis varies, timely interventions and careful monitoring enhance patient outcomes. Genetic studies have given us valuable insights into the molecular mechanisms of MMIHS. These studies have identified mutations in genes involved in the development and function of smooth muscle cells. They have also shown that MMIHS is associated with defects in the signaling pathways that control muscle contraction. Continued research in the genetics of MMIHS holds promise for unraveling the complexities of MMIHS and improving the lives of affected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in this article. Further inquiries can be directed to the corresponding author.

Abbreviations

MMIHS :

Megacystis microcolon intestinal hypoperistalsis syndrome

ACTG2 :

Actin gamma 2, smooth muscle

LMOD1 :

Leiomodin 1

MYH11 :

Myosin heavy chain 11

MYL9 :

Myosin light chain 9

MYLK :

Myosin light chain kinase

PDCL3 :

Phosducin like 3

NGS:

Next-generation sequencing

TPN:

Total parenteral nutrition

CIPO:

Chronic idiopathic intestinal pseudo-obstruction

AD:

Autosomal dominant

AR:

Autosomal recessive

MRI:

Magnetic resonance imaging

US:

United States

GID:

Gastrointestinal dysmotility

MVTs:

Multivisceral transplants

GPx:

Glutathione peroxidase

SODs:

Superoxide dismutases

ESLD:

End-stage liver disease

SMOF:

Structured lipid-based multicomponent oil

LE:

Lipid emulsion

IFALD:

Intestinal failure-associated liver disease

DKT:

Dai-Kenchu-to

HKT:

Hochuekkito

References

  1. López-Muñoz E, Hernández-Zarco A, Polanco-Ortiz A, et al. Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS): report of a case with prolonged survival and literature review. J Pediatr Urol. 2013;9:e12–8.

    Article  PubMed  Google Scholar 

  2. Nakamura H, O’Donnell AM, Puri P. Consanguinity and its relevance for the incidence of megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS): systematic review. Pediatr Surg Int. 2019;35:175–80.

    Article  PubMed  Google Scholar 

  3. Andrés AM, Miguel M, De la Torre C, et al. Pseudoobstrucción intestinal idiopática crónica y síndrome de berdon: todavía un desafío diagnóstico y terapéutico para el cirujano pediátrico [Chronic idiopathic intestinal pseudo obstruction and Berdon syndrome: still a diagnostic and therapeutic challenge for the pediatric surgeon]. Cir Pediatr. 2010;23:215–21.

    PubMed  Google Scholar 

  4. Ambartsumyan L. Megacystis-microcolon-intestinal hypoperistalsis syndrome overview. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2019. p. 1993–2024.

  5. Gauthier J, Ouled Amar Bencheikh B, Hamdan FF, et al. A homozygous loss-of-function variant in MYH11 in a case with megacystis-microcolon-intestinal hypoperistalsis syndrome. Eur J Hum Genet. 2015;23:1266–8.

    Article  CAS  PubMed  Google Scholar 

  6. Thorson W, Diaz-Horta O, Foster J 2nd, et al. De novo ACTG2 mutations cause congenital distended bladder, microcolon, and intestinal hypoperistalsis. Hum Genet. 2014;133:737–42.

    Article  CAS  PubMed  Google Scholar 

  7. Wangler MF, Gonzaga-Jauregui C, Gambin T, et al. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2) gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome. PLoS Genet. 2014;10: e1004258.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Raza F, Jehangir M, Nazir R, et al. Tension pneumoperitoneum: a rare presentation of megacystis microcolon intestinal hypoperistalsis syndrome. J Ayub Med Coll Abbottabad. 2019;31:136–7.

    PubMed  Google Scholar 

  9. Kocoshis SA, Goldschmidt ML, Nathan JD, et al. Esophageal dysmotility: an intrinsic feature of megacystis, microcolon, hypoperistalsis syndrome (MMIHS). J Pediatr Surg. 2019;54:1303–7.

    Article  PubMed  Google Scholar 

  10. McClelland C, Walsh RD, Chikwava KR, et al. Congenital mydriasis associated with megacystis microcolon intestinal hypoperistalsis syndrome. J Neuroophthalmol. 2013;33:271–5.

    Article  PubMed  Google Scholar 

  11. Jain VK, Garge S, Singh S, et al. Megacystis microcolon intestinal hypoperistalsis syndrome complicated by perforation. Afr J Paediatr Surg. 2011;8:70–1.

    Article  PubMed  Google Scholar 

  12. Hugar LA, Chaudhry R, Fuller TW, et al. Urologic phenotype and patterns of care in patients with megacystis microcolon intestinal hypoperistalsis syndrome presenting to a major pediatric transplantation center. Urology. 2018;119:127–32.

    Article  PubMed  Google Scholar 

  13. Rosenblatt J, Dreux S, Spaggiari E, et al. Prenatal diagnosis of megacystis microcolon intestinal hypoperistalsis syndrome by biochemical analysis of fetal urine. Prenat Diagn. 2018. https://doi.org/10.1002/pd.5283.

    Article  PubMed  Google Scholar 

  14. Shono T, Suita S, Taguchi T, et al. Manometric evaluation of gastrointestinal motility in a case of megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). Eur J Pediatr Surg. 1992;2:52–5.

    Article  CAS  PubMed  Google Scholar 

  15. Young ID, McKeever PA, Brown LA, et al. Prenatal diagnosis of the megacystis-microcolon-intestinal hypoperistalsis syndrome. J Med Genet. 1989;26:403–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muller F, Dreux S, Vaast P, et al. Prenatal diagnosis of megacystis-microcolon-intestinal hypoperistalsis syndrome: contribution of amniotic fluid digestive enzyme assay and fetal urinalysis. Prenat Diagn. 2005;25:203–9.

    Article  PubMed  Google Scholar 

  17. Machado L, Matias A, Rodrigues M, et al. Fetal megacystis as a prenatal challenge: megacystis-microcolon-intestinal hypoperistalsis syndrome in a male fetus. Ultrasound Obstet Gynecol. 2013;41:345–7.

    Article  CAS  PubMed  Google Scholar 

  18. Redman JF, Jimenez JF, Golladay ES, et al. Megacystis-microcolon-intestinal hypoperistalsis syndrome: case report and review of the literature. J Urol. 1984;131:981–3.

    Article  CAS  PubMed  Google Scholar 

  19. Talisetti A, Longacre T, Pai RK, et al. Diversion colitis in a 19-year-old female with megacystis-microcolon-intestinal hypoperistalsis syndrome. Dig Dis Sci. 2009;54:2338–40.

    Article  PubMed  Google Scholar 

  20. Trebicka J, Biecker E, Gruenhage F, et al. Diagnosis of megacystis-microcolon intestinal hypoperistalsis syndrome with aplastic desmosis in adulthood: a case report. Eur J Gastroenterol Hepatol. 2008;20:353–5.

    Article  PubMed  Google Scholar 

  21. Winter RM, Knowles SA. Megacystis-microcolon-intestinal hypoperistalsis syndrome: confirmation of autosomal recessive inheritance. J Med Genet. 1986;23:360–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Penman DG, Lilford RJ. The megacystis-microcolon-intestinal hypoperistalsis syndrome: a fatal autosomal recessive condition. J Med Genet. 1989;26:66–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cai H, Xiao Y, Chen S, et al. Heterozygous Actg2R257C mice mimic the phenotype of megacystis microcolon intestinal hypoperistalsis syndrome. Neurogastroenterol Motil. 2023;35: e14472.

    Article  CAS  PubMed  Google Scholar 

  24. Ignasiak-Budzyńska K, Danko M, Książyk J. Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS): series of 4 cases caused by mutation of ACTG2 (actin gamma 2, smooth muscle) gene. Case Rep Gastrointest Med. 2021;2021:6612983.

    PubMed  PubMed Central  Google Scholar 

  25. Xiong X, Li J, Liu C, et al. Visceral myopathy diagnosed by a de novo ACTG2 mutation in a patient with chronic intestinal pseudo-obstruction-a case report. Transl Pediatr. 2021;10:679–85.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Matera I, Bordo D, Di Duca M, et al. Novel ACTG2 variants disclose allelic heterogeneity and bi-allelic inheritance in pediatric chronic intestinal pseudo-obstruction. Clin Genet. 2021;99:430–6.

    Article  CAS  PubMed  Google Scholar 

  27. Ravenscroft G, Pannell S, O’Grady G, et al. Variants in ACTG2 underlie a substantial number of Australasian patients with primary chronic intestinal pseudo-obstruction. Neurogastroenterol Motil. 2018;30: e13371.

    Article  CAS  PubMed  Google Scholar 

  28. Korğalı EÜ, Yavuz A, Şimşek CEÇ, et al. Megacystis microcolon intestinal hypoperistalsis syndrome in which a different de novo Actg2 gene mutation was detected: a case report. Fetal Pediatr Pathol. 2018;37:109–16.

    Article  PubMed  Google Scholar 

  29. Whittington JR, Poole AT, Dutta EH, et al. A novel mutation in ACTG2 gene in mother with chronic intestinal pseudoobstruction and fetus with megacystis microcolon intestinal hypoperistalsis syndrome. Case Rep Genet. 2017;2017:9146507.

    PubMed  PubMed Central  Google Scholar 

  30. Matera I, Rusmini M, Guo Y, et al. Variants of the ACTG2 gene correlate with degree of severity and presence of megacystis in chronic intestinal pseudo-obstruction. Eur J Hum Genet. 2016;24:1211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tuzovic L, Tang S, Miller RS, et al. New insights into the genetics of fetal megacystis: ACTG2 mutations, encoding γ-2 smooth muscle actin in megacystis microcolon intestinal hypoperistalsis syndrome (Berdon syndrome). Fetal Diagn Ther. 2015;38:296–306.

    Article  PubMed  Google Scholar 

  32. Billon C, Molin A, Poirsier C, et al. Fetal megacystis-microcolon: genetic mutational spectrum and identification of PDCL3 as a novel candidate gene. Clin Genet. 2020;98:261–73.

    Article  CAS  PubMed  Google Scholar 

  33. Liu K, Lu L, Chen S, et al. Loss-of-function variants within LMOD1 actin-binding site 2 cause pediatric intestinal pseudo-obstruction by impairing protein stability and actin nucleation. FASEB J. 2022;36: e22194.

    CAS  PubMed  Google Scholar 

  34. Wang Q, Zhang J, Wang H, et al. Compound heterozygous variants in MYH11 underlie autosomal recessive megacystis-microcolon-intestinal hypoperistalsis syndrome in a Chinese family. J Hum Genet. 2019;64:1067–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kloth K, Renner S, Burmester G, et al. 16p13.11 microdeletion uncovers loss-of-function of a MYH11 missense variant in a patient with megacystis-microcolon-intestinal-hypoperistalsis syndrome. Clin Genet. 2019;96:85–90.

    Article  CAS  PubMed  Google Scholar 

  36. Moreno CA, Sobreira N, Pugh E, et al. Homozygous deletion in MYL9 expands the molecular basis of megacystis-microcolon-intestinal hypoperistalsis syndrome. Eur J Hum Genet. 2018;26:669–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kandler JL, Sklirou E, Woerner A, et al. Compound heterozygous loss of function variants in MYL9 in a child with megacystis-microcolon-intestinal hypoperistalsis syndrome. Mol Genet Genomic Med. 2020;8: e1516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Halim D, Brosens E, Muller F, et al. Loss-of-function variants in MYLK cause recessive megacystis microcolon intestinal hypoperistalsis syndrome. Am J Hum Genet. 2017;101:123–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hashmi SK, Ceron RH, Heuckeroth RO. Visceral myopathy: clinical syndromes, genetics, pathophysiology, and fall of the cytoskeleton. Am J Physiol Gastrointest Liver Physiol. 2021;320:G919–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zimmerman RA, Tomasek JJ, McRae J, et al. Decreased expression of smooth muscle alpha-actin results in decreased contractile function of the mouse bladder. J Urol. 2004;172:1667–72.

    Article  CAS  PubMed  Google Scholar 

  41. Halim D, Wilson MP, Oliver D, et al. Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice. Proc Natl Acad Sci USA. 2017;114:E2739–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu W, Orr-Urtreger A, Nigro F, et al. Multiorgan autonomic dysfunction in mice lacking the beta2 and the beta4 subunits of neuronal nicotinic acetylcholine receptors. J Neurosci. 1999;19:9298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Neve J, Molle L, Timmermans J. Importance du sélénium en alimentation parentérale totale. Pharmakon. 1985;62:95–105.

    Google Scholar 

  44. Hirato J, Nakazato Y, Koyama H, et al. Encephalopathy in megacystis-microcolon-intestinal hypoperistalsis syndrome patients on long-term total parenteral nutrition possibly due to selenium deficiency. Acta Neuropathol. 2003;106:234–42.

    Article  PubMed  Google Scholar 

  45. Loinaz C, Rodríguez MM, Kato T, et al. Intestinal and multivisceral transplantation in children with severe gastrointestinal dysmotility. J Pediatr Surg. 2005;40:1598–604.

    Article  PubMed  Google Scholar 

  46. Nathan JD, Rudolph JA, Kocoshis SA, et al. Isolated liver and multivisceral transplantation for total parenteral nutrition-related end-stage liver disease. J Pediatr Surg. 2007;42:143–7.

    Article  PubMed  Google Scholar 

  47. Kunzler de Oliveira Maia F, Tekin A, Nicolau-Raducu R, et al. Use of pediatric donor en bloc kidneys along with bladder segment in pediatric liver-kidney and multivisceral-kidney transplantation. Pediatr Transplant. 2020;24: e13596.

    Article  PubMed  Google Scholar 

  48. Reyes J, Tzakis AG, Todo S, et al. Small bowel and liver/small bowel transplantation in children. Semin Pediatr Surg. 1993;2:289–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee S, Park HJ, Yoon J, et al. Reversal of intestinal failure-associated liver disease by switching from a combination lipid emulsion containing fish oil to fish oil monotherapy. J Parenter Enteral Nutr. 2016;40:437–40.

    Article  CAS  Google Scholar 

  50. Hirakawa H, Ueno S, Matuda H, et al. Effect of the herbal medicine dai-kenchu-to on gastrointestinal motility in patients with megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) and chronic idiopathic intestinal pseudo-obstruction (CIIP): report of two cases. Tokai J Exp Clin Med. 2009;34:28–33.

    PubMed  Google Scholar 

  51. Berdon WE, Baker DH, Blanc WA, et al. Megacystis-microcolon-intestinal hypoperistalsis syndrome: a new cause of intestinal obstruction in the newborn. Report of radiologic findings in five newborn girls. AJR Am J Roentgenol. 1976;126:957–64.

    Article  CAS  PubMed  Google Scholar 

  52. Gu L, Ding C, Tian H, et al. Serial frozen fecal microbiota transplantation in the treatment of chronic intestinal pseudo-obstruction: a preliminary study. J Neurogastroenterol Motil. 2017;23:289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes. 2013;20:14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis [published correction appears in Cell. 2015 Sep 24;163:258]. Cell. 2015;161:264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. De Vadder F, Grasset E, Mannerås Holm L, et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci USA. 2018;115:6458–63.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Viti F, De Giorgio R, Ceccherini I, et al. Multi-disciplinary insights from the First European Forum on Visceral Myopathy 2022 Meeting. Dig Dis Sci. 2023;68:3857–71.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kassam Z, Lee CH, Yuan Y, et al. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol. 2013;108:500–8.

    Article  ADS  PubMed  Google Scholar 

  58. Kelly CR, Kahn S, Kashyap P, et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology. 2015;149:223–37.

    Article  PubMed  Google Scholar 

  59. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–15.

    Article  PubMed  Google Scholar 

  60. Jona JZ, Werlin SL. The megacystis microcolon intestinal hypoperistalsis syndrome: report of a case. J Pediatr Surg. 1981;16:749–51.

    Article  CAS  PubMed  Google Scholar 

  61. Gillis DA, Grantmyre EB. Megacystis-microcolon-intestinal hypoperistalsis syndrome: survival of a male infant. J Pediatr Surg. 1985;20:279–81.

    Article  CAS  PubMed  Google Scholar 

  62. Taguchi T, Ikeda K, Shono T, et al. Autonomic innervation of the intestine from a baby with megacystis microcolon intestinal hypoperistalsis syndrome: I. Immunohistochemical study. J Pediatr Surg. 1989;24:1264–6.

    Article  CAS  PubMed  Google Scholar 

  63. Al-Rayess M, Ambler MW. Axonal dystrophy presenting as the megacystis-microcolon-intestinal hypoperistalsis syndrome. Pediatr Pathol. 1992;12:743–50.

    Article  CAS  PubMed  Google Scholar 

  64. Srikanth MS, Ford EG, Isaacs H Jr, et al. Megacystis microcolon intestinal hypoperistalsis syndrome: late sequelae and possible pathogenesis. J Pediatr Surg. 1993;28:957–9.

    CAS  PubMed  Google Scholar 

  65. Ciftci AO, Cook RC, van Velzen D. Megacystis microcolon intestinal hypoperistalsis syndrome: evidence of a primary myocellular defect of contractile fiber synthesis. J Pediatr Surg. 1996;31:1706–11.

    Article  CAS  PubMed  Google Scholar 

  66. Rolle U, O’Briain S, Pearl RH, et al. Megacystis-microcolon-intestinal hypoperistalsis syndrome: evidence of intestinal myopathy. Pediatr Surg Int. 2002;18:2–5.

    Article  PubMed  Google Scholar 

  67. Piotrowska AP, Rolle U, Chertin B, et al. Alterations in smooth muscle contractile and cytoskeleton proteins and interstitial cells of Cajal in megacystis microcolon intestinal hypoperistalsis syndrome. J Pediatr Surg. 2003;38:749–55.

    Article  PubMed  Google Scholar 

  68. Xu W, Gelber S, Orr-Urtreger A, et al. Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA. 1999;96:5746–51.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chamyan G, Debich-Spicer D, Opitz JM, et al. Megacystis-microcolon-intestinal hypoperistalsis syndrome and aganglionosis in trisomy 18. Am J Med Genet. 2001;102:293–6.

    Article  CAS  PubMed  Google Scholar 

  70. Szigeti R, Chumpitazi BP, Finegold MJ, et al. Absent smooth muscle actin immunoreactivity of the small bowel muscularis propria circular layer in association with chromosome 15q11 deletion in megacystis-microcolon-intestinal hypoperistalsis syndrome. Pediatr Dev Pathol. 2010;13:322–5.

    Article  PubMed  Google Scholar 

  71. Couper RT, Byard RW, Cutz E, et al. Cardiac rhabdomyomata and megacystis-microcolon-intestinal hypoperistalsis syndrome. J Med Genet. 1991;28:274–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Halim D, Hofstra RM, Signorile L, et al. ACTG2 variants impair actin polymerization in sporadic megacystis microcolon intestinal hypoperistalsis syndrome. Hum Mol Genet. 2016;25:571–83.

    Article  CAS  PubMed  Google Scholar 

  73. Milunsky A, Baldwin C, Zhang X, et al. Diagnosis of chronic intestinal pseudo-obstruction and megacystis by sequencing the ACTG2 gene. J Pediatr Gastroenterol Nutr. 2017;65:384–7.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yetman AT, Starr LJ. Newly described recessive MYH11 disorder with clinical overlap of multisystemic smooth muscle dysfunction and megacystis microcolon hypoperistalsis syndromes. Am J Med Genet A. 2018;176:1011–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

PD and KP conceived the idea of the study. KRU supervised and contributed to the design and implementation of the study. VAN and KSM conducted literature mining of already reported and employed the prediction of effects of SNVs using various in silico tools and interpreted the results. VAN wrote the manuscript with support from PD, KP, and KSM. Overall, all the authors concluded the study and contributed to the manuscript.

Corresponding author

Correspondence to Kavutharapu Sri Manjari.

Ethics declarations

Conflict of interest

No potential conflicts of interest.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 42 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devavarapu, P.K.V., Uppaluri, K.R., Nikhade, V.A. et al. Exploring the complexities of megacystis-microcolon-intestinal hypoperistalsis syndrome: insights from genetic studies. Clin J Gastroenterol (2024). https://doi.org/10.1007/s12328-024-01934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12328-024-01934-x

Keywords

Navigation