Skip to main content
Log in

The Cerebellar Cognitive Affective/Schmahmann Syndrome Scale in Spinocerebellar Ataxias

  • Research
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The Cerebellar Cognitive Affective/Schmahmann Syndrome (CCAS) manifests as impaired executive control, linguistic processing, visual spatial function, and affect regulation. The CCAS has been described in the spinocerebellar ataxias (SCAs), but its prevalence is unknown. We analyzed results of the CCAS/Schmahmann Scale (CCAS-S), developed to detect and quantify CCAS, in two natural history studies of 309 individuals Symptomatic for SCA1, SCA2, SCA3, SCA6, SCA7, or SCA8, 26 individuals Pre-symptomatic for SCA1 or SCA3, and 37 Controls. We compared total raw scores, domain scores, and total fail scores between Symptomatic, Pre-symptomatic, and Control cohorts, and between SCA types. We calculated scale sensitivity and selectivity based on CCAS category designation among Symptomatic individuals and Controls, and correlated CCAS-S performance against age and education, and in Symptomatic patients, against genetic repeat length, onset age, disease duration, motor ataxia, depression, and fatigue. Definite CCAS was identified in 46% of the Symptomatic group. False positive rate among Controls was 5.4%. Symptomatic individuals had poorer global CCAS-S performance than Controls, accounting for age and education. The domains of semantic fluency, phonemic fluency, and category switching that tap executive function and linguistic processing consistently separated Symptomatic individuals from Controls. CCAS-S scores correlated most closely with motor ataxia. Controls were similar to Pre-symptomatic individuals whose nearness to symptom onset was unknown. The use of the CCAS-S identifies a high CCAS prevalence in a large cohort of SCA patients, underscoring the utility of the scale and the notion that the CCAS is the third cornerstone of clinical ataxiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Primary data from the natural history studies (CRC-SCA and READISCA) are housed and curated at the Heath Informatics Institute (HII) at the University of South Florida. Data that serve as the basis for this analysis were downloaded to secure, password-protected Massachusetts General Hospital servers maintained in the Schmahmann Laboratory for Neuroanatomy and Cerebellar Neurobiology. Data are de-identified and available from the senior author upon reasonable request.

References

  1. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79. https://doi.org/10.1093/brain/121.4.561.

    Article  PubMed  Google Scholar 

  2. Manto M, Mariën P. Schmahmann’s syndrome - identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015;2:2. https://doi.org/10.1186/s40673-015-0023-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(5):1041–50. https://doi.org/10.1093/brain/123.5.1041.

    Article  PubMed  Google Scholar 

  4. Albazron FM, Bruss J, Jones RM, et al. Pediatric postoperative cerebellar cognitive affective syndrome follows outflow pathway lesions. Neurology. 2019;93(16):e1561–71. https://doi.org/10.1212/WNL.0000000000008326.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Argyropoulos GPD, van Dun K, Adamaszek M, et al. The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. Cerebellum. 2020;19(1):102–25. https://doi.org/10.1007/s12311-019-01068-8.

    Article  CAS  PubMed  Google Scholar 

  6. Kronemer SI, Slapik MB, Pietrowski JR, et al. Neuropsychiatric symptoms as a reliable phenomenology of cerebellar ataxia. Cerebellum. 2021;20(2):141–50. https://doi.org/10.1007/s12311-020-01195-7.

    Article  PubMed  Google Scholar 

  7. Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis. 2016;11(1):82. https://doi.org/10.1186/s13023-016-0447-6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Olivito G, Cercignani M, Lupo M, et al. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: a network based statistics analysis. NeuroImage: Clinical. 2017;14:719–25. https://doi.org/10.1016/j.nicl.2017.03.009.

    Article  CAS  PubMed  Google Scholar 

  9. Olivito G, Lupo M, Iacobacci C, et al. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2. J Neurol. 2018;265(3):597–606. https://doi.org/10.1007/s00415-018-8738-6.

    Article  CAS  PubMed  Google Scholar 

  10. Stoodley CJ, MacMore JP, Makris N, Sherman JC, Schmahmann JD. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage: Clinical. 2016;12:765–75. https://doi.org/10.1016/j.nicl.2016.10.013.

    Article  PubMed  Google Scholar 

  11. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134(12):3672–86. https://doi.org/10.1093/brain/awr266.

    Article  PubMed  Google Scholar 

  12. Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178. https://doi.org/10.1001/archneur.1991.00530230086029.

    Article  CAS  PubMed  Google Scholar 

  13. Schmahmann JD. Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci. 1998;2(9):362–71. https://doi.org/10.1016/S1364-6613(98)01218-2.

    Article  CAS  PubMed  Google Scholar 

  14. Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguistics. 2000;13(2-3):189–214. https://doi.org/10.1016/S0911-6044(00)00011-7.

    Article  Google Scholar 

  15. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42(1):337–64. https://doi.org/10.1146/annurev-neuro-070918-050258.

    Article  CAS  PubMed  Google Scholar 

  16. Shakkottai VG, Fogel BL. Autosomal dominant spinocerebellar ataxia. Neurol Clin. 2013;31(4):987–1007. https://doi.org/10.1016/j.ncl.2013.04.006.

    Article  PubMed  Google Scholar 

  17. Giocondo F, Curcio G. Spinocerebellar ataxia: a critical review of cognitive and socio-cognitive deficits. Int J Neurosci. 2018;128(2):182–91. https://doi.org/10.1080/00207454.2017.1377198.

    Article  PubMed  Google Scholar 

  18. Lindsay E, Storey E. Cognitive changes in the spinocerebellar ataxias due to expanded polyglutamine tracts: a survey of the literature. Brain Sci. 2017;7(7):83. https://doi.org/10.3390/brainsci7070083.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex. 2011;47(1):81–100. https://doi.org/10.1016/j.cortex.2009.04.012.

    Article  PubMed  Google Scholar 

  20. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141(1):248–70. https://doi.org/10.1093/brain/awx317.

    Article  PubMed  Google Scholar 

  21. Thieme A, Faber J, Sulzer P, et al. The CCAS-scale in hereditary ataxias: helpful on the group level, particularly in SCA3, but limited in individual patients. J Neurol. 2022;1 https://doi.org/10.1007/s00415-022-11071-5.

  22. Maas RPPWM, Killaars S, van de Warrenburg BPC, Schutter DJLG. The cerebellar cognitive affective syndrome scale reveals early neuropsychological deficits in SCA3 patients. J Neurol. 2021;268(9):3456–66. https://doi.org/10.1007/s00415-021-10516-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodríguez-Labrada R, Batista-Izquierdo A, González-Melix Z, Reynado-Cejas L, Vázquez-Mojena Y, Sanz YA, Canales-Ochoa N, González-Zaldívar Y, Dogan I, Reetz K, Velázquez-Pérez L. Cognitive decline is closely associated with ataxia severity in spinocerebellar ataxia type 2: a validation study of the schmahmann syndrome scale. Cerebellum. 2022;21(3):391–403. https://doi.org/10.1007/s12311-021-01305-z.

    Article  PubMed  Google Scholar 

  24. Thieme A, Röske S, Faber J, et al. Reference values for the Cerebellar Cognitive Affective Syndrome Scale: age and education matter. Brain. 2021;144(2):e20. https://doi.org/10.1093/brain/awaa417.

    Article  PubMed  Google Scholar 

  25. Kim DH, Kim R, Lee JY, Lee KM. Clinical, imaging, and laboratory markers of premanifest spinocerebellar ataxia 1, 2, 3, and 6: a systematic review. J Clin Neurol. 2021;17(2):187. https://doi.org/10.3988/jcn.2021.17.2.187.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lin CC, Ashizawa T, Kuo SH. Collaborative efforts for spinocerebellar ataxia research in the United States: CRC-SCA and READISCA. Front Neurol. 2020;11:902. https://doi.org/10.3389/fneur.2020.00902.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schmitz-Hubsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20. https://doi.org/10.1212/01.wnl.0000219042.60538.92.

    Article  CAS  PubMed  Google Scholar 

  28. Schmahmann JD, Gardner R, MacMore J, Vangel MG. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS: Brief Ataxia Rating Scale. Mov Disord. 2009;24(12):1820–8. https://doi.org/10.1002/mds.22681.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Subramony SH, May W, Lynch D, et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64(7):1261–2. https://doi.org/10.1212/01.WNL.0000156802.15466.79.

    Article  CAS  PubMed  Google Scholar 

  30. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The Fatigue Severity Scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121. https://doi.org/10.1001/archneur.1989.00520460115022.

    Article  CAS  PubMed  Google Scholar 

  31. Kroenke K, Spitzer RL, Williams JBW. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–13. https://doi.org/10.1046/j.1525-1497.2001.016009606.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Selvadurai LP, Perlman SL, Wilmot GR, et al. The S-Factor, a new measure of disease severity in spinocerebellar ataxia: findings and implications. Cerebellum. 2023;22(5):790–809. https://doi.org/10.1007/s12311-022-01424-1.

    Article  CAS  PubMed  Google Scholar 

  33. Mair P, Wilcox R. Robust statistical methods in R using the WRS2 package. Behav Res. 2020;52(2):464–88. https://doi.org/10.3758/s13428-019-01246-w.

    Article  Google Scholar 

  34. Schmahmann JD, Vangel MG, Hoche F, Guell X, Sherman JC. Reply: reference values for the Cerebellar Cognitive Affective Syndrome Scale: age and education matter. Brain. 2021;144(2):e21. https://doi.org/10.1093/brain/awaa419.

    Article  PubMed  Google Scholar 

  35. Leggio MG. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69(1):102–6. https://doi.org/10.1136/jnnp.69.1.102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Richter S, Gerwig M, Aslan B, et al. Cognitive functions in patients with MR-defined chronic focal cerebellar lesions. J Neurol. 2007;254(9):1193–203. https://doi.org/10.1007/s00415-006-0500-9.

    Article  PubMed  Google Scholar 

  37. Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110(3):149–53. https://doi.org/10.1016/j.bandl.2009.07.006.

    Article  PubMed  Google Scholar 

  38. Baldarçara L, Currie S, Hadjivassiliou M, et al. Consensus paper: radiological biomarkers of cerebellar diseases. Cerebellum. 2015;14(2):175–96. https://doi.org/10.1007/s12311-014-0610-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rüb U, Schöls L, Paulson H, et al. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol. 2013;104:38–66. https://doi.org/10.1016/j.pneurobio.2013.01.001.

    Article  CAS  PubMed  Google Scholar 

  40. Bürk K, Globas C, Bösch S, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250(2):207–11. https://doi.org/10.1007/s00415-003-0976-5.

    Article  PubMed  Google Scholar 

  41. Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav Neurol. 2010;23(1-2):17–29. https://doi.org/10.1155/2010/395045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klinke I, Minnerop M, Schmitz-Hübsch T, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010;9(3):433–42. https://doi.org/10.1007/s12311-010-0183-8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chirino-Pérez A, Marrufo-Meléndez OR, Muñoz-López JI, et al. Mapping the cerebellar cognitive affective syndrome in patients with chronic cerebellar strokes. Cerebellum. 2022;21(2):208–18. https://doi.org/10.1007/s12311-021-01290-3.

    Article  PubMed  Google Scholar 

  44. Naeije G, Rai M, Allaerts N, Sjogard M, De Tiège X, Pandolfo M. Cerebellar cognitive disorder parallels cerebellar motor symptoms in Friedreich ataxia. Ann Clin Transl Neurol. 2020;7(6):1050–4. https://doi.org/10.1002/acn3.51079.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brusse E, Brusse-Keizer MGJ, Duivenvoorden HJ, van Swieten JC. Fatigue in spinocerebellar ataxia: patient self-assessment of an early and disabling symptom. Neurology. 2011;76(11):953–9. https://doi.org/10.1212/WNL.0b013e31821043a4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Martinez ARM, Nunes MB, Faber I, D’Abreu A, Lopes-Cendes Í, França MC. Fatigue and its associated factors in spinocerebellar ataxia type 3/Machado-Joseph disease. Cerebellum. 2017;16(1):118–21. https://doi.org/10.1007/s12311-016-0775-z.

    Article  PubMed  Google Scholar 

  47. Mastammanavar VS, Kamble N, Yadav R, et al. Non-motor symptoms in patients with autosomal dominant spinocerebellar ataxia. Acta Neurol Scand. 2020;142(4):368–76. https://doi.org/10.1111/ane.13318.

    Article  PubMed  Google Scholar 

  48. Fancellu R, Paridi D, Tomasello C, et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260(12):3134–43. https://doi.org/10.1007/s00415-013-7138-1.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and families who participate in the natural history studies and the coordinators at the participating sites who administer these studies together with their site principal investigators. The assistance of Jason MacMore in this project is gratefully acknowledged.

Funding

Supported in part by the National Ataxia Foundation, the Gordon and Marilyn Macklin Foundation, the MINDlink Foundation, and the National Institute of Neurological Disorders and Stroke (NINDS) grant U01 NS104326 for the READISCA project (NCT03487367). L.P.S. was funded by an Australian-US Fulbright Commission scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Schmahmann.

Ethics declarations

Ethics Approval

Approval was obtained for study procedures at all sites via the local IRB at each institution, and all participants gave informed consent. The central sites (UCLA for CRC-SCA and Houston Methodist for READISCA) prepared the original IRB documents that were used by all participating sites during their local reviews.

Conflict of Interest

L.P.S. was funded by an Australian-American Fulbright Commission scholarship.

C.U.O. receives research support from Alector Inc. and Transposon Inc., and consults for Acadia Pharmaceuticals. He is also supported by the Robert and Nancy Hall for Brain Research, and the Joseph Trovato Fund.

L.S.R. is site PI for Biohaven Pharma and has consulted for Bial Biotech and Reata Pharmaceuticals. She receives research support from NINDS, Pfizer, the National Ataxia Foundation, Gordon and Marilyn Macklin Foundation, and the Daniel B and Florence E. Green Foundation.

M.D.G is site PI for Biohaven Pharma, receives funding from the NIH/NIA (R01 AG AG031189; R01AG062562; R56 AG055619) and is supported by the Michael J. Homer Family Fund.

J.D.S. is site PI for Biohaven Pharma, consults for Biohaven, and holds the copyright with the General Hospital Corporation to the Brief Ataxia Rating scale, Patient Reported outcome Measure of Ataxia, the Cerebellar Cognitive Affective / Schmahmann Syndrome Scale, and the Cerebellar Neuropsychiatric Rating Scale.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvadurai, L.P., Perlman, S.L., Ashizawa, T. et al. The Cerebellar Cognitive Affective/Schmahmann Syndrome Scale in Spinocerebellar Ataxias. Cerebellum (2024). https://doi.org/10.1007/s12311-023-01651-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-023-01651-0

Keywords

Navigation