Skip to main content

Advertisement

Log in

Noradrenergic Pathway to the Cerebellum: the Study Must Go On

  • Brief Report
  • Published:
The Cerebellum Aims and scope Submit manuscript

A Cerebellar Classic to this article was published on 23 September 2022

Abstract

In 1967, Andén, Fuxe, and Ungerstedt demonstrated the presence of monoamine-containing fibers in the rat cerebellum. Over the past 50 years, this finding has provided clinical relevance of the noradrenergic system to the cerebellum. Cerebellar dysfunction and noradrenergic system may relate to tremor in Parkinson disease and essential tremor, motor learning, and the vestibulo–ocular reflex in spinocerebellar ataxias. Cognition and emotion may also be linked to the cerebellar noradrenergic system, in relation to the symptoms of Alzheimer disease, dementia with Lewy bodies, and attention-deficit/hyperactivity disorder. Despite recent technological advances in neuroimaging for evaluating the noradrenergic system, we need more evidence to understand the precise pathophysiological relationship between the cerebellum and the noradrenergic system and its clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Abbreviations

AD:

Alzheimer disease

ADHD:

Attention-deficit/hyperactivity disorder

ET:

Essential tremor

LC:

Locus coeruleus

NA:

Noradrenaline

PD:

Parkinson disease

PET:

Positron emission tomography

VOR:

Vestibulo–ocular reflex

References

  1. Andén NE, Fuxe K, Ungerstedt U. Monoamine pathways to the cerebellum and cerebral cortex. Experientia. 1967;23:838–9. https://doi.org/10.1007/BF02146876.

    Article  PubMed  Google Scholar 

  2. Moriguchi S, Kimura Y, Ichise M, Arakawa R, Takano H, Seki C, Ikoma Y, Takahata K, Nagashima T, Yamada M, Mimura M, Suhara T. PET quantification of the norepinephrine transporter in human brain with (S, S)-(18)F-FMeNER-D2. J Nucl Med. 2017;58:1140–5. https://doi.org/10.2967/jnumed.116.178913.

    Article  PubMed  CAS  Google Scholar 

  3. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136:696–709. https://doi.org/10.1093/brain/aws360.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kish SJ, Shannak KS, Rajput AH, Gilbert JJ, Hornykiewicz O. Cerebellar norepinephrine in patients with Parkinson’s disease and control subjects. Arch Neurol. 1984;41:612–4. https://doi.org/10.1001/archneur.1984.04210080020007.

    Article  PubMed  CAS  Google Scholar 

  5. Zhong Y, Liu H, Liu G, Zhao L, Dai C, Liang Y, Du J, Zhou X, Mo L, Tan C, Tan X, Deng F, Liu X, Chen L. A review on pathology, mechanism, and therapy for cerebellum and tremor in Parkinson’s disease. NPJ Parkinsons Dis. 2022;8:82. https://doi.org/10.1038/s41531-022-00347-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Paulus W, Jellinger K. The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol. 1991;50:743–55. https://doi.org/10.1097/00005072-199111000-00006.

    Article  PubMed  CAS  Google Scholar 

  7. Louis ED, Faust PL. Essential tremor pathology: neurodegeneration and reorganization of neuronal connections. Nat Rev Neurol. 2020;16:69–83. https://doi.org/10.1038/s41582-019-0302-1.

    Article  PubMed  CAS  Google Scholar 

  8. Marin-Lahoz J, Gironell A. Linking essential tremor to the cerebellum: neurochemical evidence. Cerebellum. 2016;15:243–52. https://doi.org/10.1007/s12311-015-0735-z.

    Article  PubMed  CAS  Google Scholar 

  9. Shill HA, Adler CH, Beach TG, Lue LF, Caviness JN, Sabbagh MN, Sue LI, Walker DG. Brain biochemistry in autopsied patients with essential tremor. Mov Disord. 2012;27:113–7. https://doi.org/10.1002/mds.24004.

    Article  PubMed  CAS  Google Scholar 

  10. van Neerven J, Pompeiano O, Collewijn H, van der Steen J. Injections of beta-noradrenergic substances in the flocculus of rabbits affect adaptation of the VOR gain. Exp Brain Res. 1990;79:249–60. https://doi.org/10.1007/BF00608233.

    Article  PubMed  Google Scholar 

  11. Watson M, McElligott JG. Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Res. 1984;296:129–38. https://doi.org/10.1016/0006-8993(84)90518-3.

    Article  PubMed  CAS  Google Scholar 

  12. Gordon CR, Zivotofsky AZ, Caspi A. Impaired vestibulo-ocular reflex (VOR) in spinocerebellar ataxia type 3 (SCA3): bedside and search coil evaluation. J Vestib Res. 2014;24:351–5. https://doi.org/10.3233/VES-140527.

    Article  PubMed  Google Scholar 

  13. Fukutani Y, Katsukawa K, Matsubara R, Kobayashi K, Nakamura I, Yamaguchi N. Delirium associated with Joseph disease. J Neurol Neurosurg Psychiatry. 1993;56:1207–12. https://doi.org/10.1136/jnnp.56.11.1207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nishizawa M, Onodera O, Hirakawa A, Shimizu Y, Yamada M, Rovatirelin Study Group. Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. J Neurol Neurosurg Psychiatry. 2020;91:254–62. https://doi.org/10.1136/jnnp-2019-322168

  15. Simic G, Babic Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milosevic N, Bazadona D, Buee L, de Silva R, Di Giovanni G, Wischik CM, Hof PR. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol. 2017;151:101–38. https://doi.org/10.1016/j.pneurobio.2016.04.001.

    Article  PubMed  CAS  Google Scholar 

  16. Beardmore R, Hou R, Darekar A, Holmes C, Boche D. The locus coeruleus in aging and Alzheimer’s disease: a postmortem and brain imaging review. J Alzheimers Dis. 2021;83:5–22. https://doi.org/10.3233/JAD-210191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hansen N. Locus coeruleus malfunction is linked to psychopathology in prodromal dementia with Lewy bodies. Front Aging Neurosci. 2021;13: 641101. https://doi.org/10.3389/fnagi.2021.641101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Schweitzer JB, Lee DO, Hanford RB, Tagamets MA, Hoffman JM, Grafton ST, Kilts CD. A positron emission tomography study of methylphenidate in adults with ADHD: alterations in resting blood flow and predicting treatment response. Neuropsychopharmacology. 2003;28:967–73. https://doi.org/10.1038/sj.npp.1300110.

    Article  PubMed  CAS  Google Scholar 

  19. Ulke C, Rullmann M, Huang J, Luthardt J, Becker GA, Patt M, Meyer PM, Tiepolt S, Hesse S, Sabri O, Strauss M. Adult attention-deficit/hyperactivity disorder is associated with reduced norepinephrine transporter availability in right attention networks: a (S, S)-O-[(11)C]methylreboxetine positron emission tomography study. Transl Psychiatry. 2019;9:301. https://doi.org/10.1038/s41398-019-0619-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67. https://doi.org/10.1080/14734220701490995.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported in part by the JSPS KAKENHI Grant Number 18K07543.

Author information

Authors and Affiliations

Authors

Contributions

SH wrote and conceptualized the main manuscript and text; AS wrote, reviewed, and edited the text; KA reviewed and edited the manuscript and supervised the manuscript.

All authors reviewed the manuscript.

Corresponding author

Correspondence to Shigeki Hirano.

Ethics declarations

Ethics Approval

PET scan was performed under the approval of the institutional review board of the National Institute for Quantum Science and Technology with written consent.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano, S., Sugiyama, A. & Arai, K. Noradrenergic Pathway to the Cerebellum: the Study Must Go On. Cerebellum 22, 1052–1054 (2023). https://doi.org/10.1007/s12311-022-01479-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01479-0

Keywords

Navigation