Skip to main content

Advertisement

Log in

Adult Age Differences in Self-Reported Pain and Anterior CSF Space in Chiari Malformation

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Chiari malformation type I (CMI) is a neural disorder with sensory, cognitive, and motor defects, as well as headaches. Radiologically, the cerebellar tonsils extend below the foramen magnum. To date, the relationships among adult age, brain morphometry, surgical status, and symptom severity in CMI are unknown. The objective of this study was to better understand the relationships among these variables using causal modeling techniques. Adult CMI patients (80% female) who either had (n = 150) or had not (n = 151) undergone posterior fossa decompression surgery were assessed using morphometric measures derived from magnetic resonance images (MRI). MRI-based morphometry showed that the area of the CSF pocket anterior to the cervico-medullary junction (anterior CSF space) correlated with age at the time of MRI (r =  − .21). Also, self-reported pain increased with age (r = .11) and decreased with anterior CSF space (r =  − .18). Age differences in self-reported pain were mediated by anterior CSF space in the cervical spine area—and this effect was particularly salient for non-decompressed CMI patients. As CMI patients age, the anterior CSF space decreases, and this is associated with increased pain—especially for non-decompressed CMI patients. It is recommended that further consideration of age-related decreases in anterior CSF space in CMI patients be given in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Milhorat TH, et al. Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery. 1999;44(5):1005–17.

    Article  CAS  PubMed  Google Scholar 

  2. Smith BW, Strahle J, Bapuraj JR, Muraszko KM, Garton HJ, C.O. & Maher, . Distribution of cerebellar tonsil position: Implications for understanding Chiari malformation. J Neurosurg. 2013;119:812–9.

    Article  PubMed  Google Scholar 

  3. Garcia MA, et al. An examination of pain, disability, and the psychological correlates of Chiari Malformation pre- and post-surgical correction. Disabil Health J. 2019;12(4):649–56.

    Article  PubMed  Google Scholar 

  4. Luciano M. et al. The squeeze of Chiari malformation: clinicians and scientists collaborate to understand it’s cause and effects. Pediatric Neuroscience Pathways, 2014: p. 8–10. https://consultqd.clevelandclinic.org/the-squeeze-of-chiari-malformation/.

  5. Nwotchouang B, Eppelheimer MS, Ibrahimy A, Houston JR, Biswas D, Labuda R, Bapuraj, JR, Allen PA, Frim D, Loth F. Clivus length distinguishes between asymptomatic healthy controls and symptomatic adult women with chiari malformation type I. Neuroradiology. 2020; 62:1389–1400. https://doi.org/10.1007/s00234-020-02453-5.

  6. Raz N, Rodrigue KM. Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev. 2006;30(6):730–48.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Salat DH, Kaye JA, Janowsky JS. Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease. Arch Neurol. 1999;56(3):338–44.

    Article  CAS  PubMed  Google Scholar 

  8. Smith BW, et al. Distribution of cerebellar tonsil position: implications for understanding Chiari malformation. J Neurosurg. 2013;119(3):812–9.

    Article  PubMed  Google Scholar 

  9. Alperin N, et al. Magnetic resonance imaging measures of posterior cranial fossa morphology and cerebrospinal fluid physiology in Chiari malformation type I. Neurosurgery. 2014;75(5):515–22 (discussion 522).

    Article  PubMed  Google Scholar 

  10. Houston JR, et al. A morphometric assessment of type I Chiari malformation above the McRae line: a retrospective case-control study in 302 adult female subjects. J Neuroradiol. 2018;45(1):23–31.

    Article  PubMed  Google Scholar 

  11. Biswas D, et al. Quantification of cerebellar crowding in type I Chiari malformation. Ann Biomed Eng. 2019;47(3):731–43.

    Article  PubMed  Google Scholar 

  12. Eppelheimer MS, et al. A retrospective 2D morphometric analysis of adult female Chiari type I patients with commonly reported and related conditions. Front Neuroanat. 2018;12:2.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eppelheimer MS, et al. Quantification of changes in brain morphology following posterior fossa decompression surgery in women treated for Chiari malformation type 1. Neuroradiology. 2019;61(9):1011–22.

    Article  PubMed  Google Scholar 

  14. Houston J, Allen N, Eppelheimer M, Bapuraj J, Biswas D, Allen PA, Vorster S, Luciano MG, Loth F. Evidence for gender differences in morphological abnormalities in Type I Chiari malformation. Neuroradiol J. 2019; 32:458–66. https://doi.org/10.1177/1971400919857212.

  15. Henderson FC, Austin C, Benzel E, et al. Neurological and Spinal manifestations of the Ehlers-Danlos Syndromes. American Journal of Medical Genetics Part C (Seminars in Medical Genetics) 2017;175C:195–211.

  16. Fischbein R, et al. Patient-reported Chiari malformation type I symptoms and diagnostic experiences: a report from the national Conquer Chiari Patient Registry database. Neurol Sci. 2015;36(9):1617–24.

    Article  PubMed  Google Scholar 

  17. Garcia M, et al. Cognitive functioning in Chiari malformation type I without posterior fossa surgery. Cerebellum. 2018;17(5):564–74.

    Article  PubMed  Google Scholar 

  18. Garcia M, et al. Comparison between decompressed and non-decompressed Chiari Malformation type I patients: a neuropsychological study. Neuropsychologia. 2018;121:135–43.

    Article  PubMed  Google Scholar 

  19. Rogers JM, Savage G, Stoodley MA. A systematic review of cognition in Chiari I malformation. Neuropsychol Rev. 2018;28(2):176–87.

    Article  PubMed  Google Scholar 

  20. Allen PA, et al. Task-specific and general cognitive effects in Chiari malformation type I. PLoS One. 2014;9(4):e94844.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Houston JR, et al. Type I Chiari malformation, RBANS performance, and brain morphology: connecting the dots on cognition and macrolevel brain structure. Neuropsychology. 2019;33(5):725–38.

    Article  PubMed  Google Scholar 

  22. Houston JR, et al. Evidence of neural microstructure abnormalities in type I Chiari malformation: associations among fiber tract integrity, pain, and cognitive dysfunction. Pain Med. 2020;21(10):2323–35.

    Article  PubMed  Google Scholar 

  23. Houston JR, Hughes ML, Bennett IJ, Allen PA*, Rogers JM., Lien M-C, Stoltz H, Sakaie K, Loth F, Maleki J, Vorster SJ, Luciano MG. Evidence of neural microstructure abnormalities in Type I Chiari Malformation: associations among fiber tract integrity, pain, and cognitive dysfunction. Pain Medicine, in press.

  24. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    Article  PubMed  Google Scholar 

  25. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.

    Article  PubMed  Google Scholar 

  26. Manto M, Mariën P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015;2(2):1–5.

    Google Scholar 

  27. Houston ML, Houston JR, Sakaie J, Klinge PM, Vorster S, Luciano MG, et al. Middle Tennessee State University, Psychology. Functional connectivity abnormalities in Type I Chiari: Associations with cognition and pain. Brain Communications. 2021 (in press).

  28. Allen PA, et al. Chiari 1000 Registry Project: assessment of surgical outcome on self-focused attention, pain, and delayed recall. Psychol Med. 2018;48(10):1634–43.

    Article  CAS  PubMed  Google Scholar 

  29. Sahuquillo J, Rubio E, Poca MA, Rovira A, Rodriguezbaeza A, Cervera C. Posterior-fossa reconstruction - a surgical technique for the treatment of Chiari-I malformation and Chiari-Isyringomyelia complex - preliminary-results and magneticresonance-imaging quantitative assessment of hindbrain migration. Neurosurgery. 1994;35(5):874–84.

    Article  CAS  PubMed  Google Scholar 

  30. Dworkin RH, et al. Development and initial validation of an expanded and revised version of the Short-form McGill Pain Questionnaire (SF-MPQ-2). Pain. 2009;144(1–2):35–42.

    Article  PubMed  Google Scholar 

  31. Fairbank JC, et al. The Oswestry low back pain disability questionnaire. Physiotherapy. 1980;66(8):271–3.

    CAS  PubMed  Google Scholar 

  32. Wood BM, Nicholas MK, Blyth F, Asghari A, Gibson S. The utility of the short version of the Depression Anxiety Stress Scales (DASS-21) in elderly patients with persistent pain: does age make a difference? Pain Med. 2010;11:1780–90.

    Article  PubMed  Google Scholar 

  33. Weiss DS, Marmar CR. The impact of event scale-revised. In: Wilson TMKJP, editor. assessing psychological trauma and PTSD: a practitioner’s handbook. New York: Guilford Press; 1997. p. 168–89.

    Google Scholar 

  34. Schmidt, Rey auditory verbal learning test: RAVLT: a handbook. 1996.

  35. Bond AE, Jane Sr JA, Liu KC, Oldfield EH. Changes in cerebrospinal fluid flow assessed using intraoperative MRI during posterior fossa decompression for Chiari malformation. J Neurosurg. 2015;122(5):1068–75.

    Article  PubMed  Google Scholar 

  36. Heiss JD, et al. Elucidating the pathophysiology of syringomyelia. J Neurosurg. 1999;91(4):553–62.

    Article  CAS  PubMed  Google Scholar 

  37. Heiss JD, et al. Normalization of hindbrain morphology after decompression of Chiari malformation Type I. J Neurosurg. 2012;117(5):942–6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Karagoz F, Izgi N, Sencer SK. Morphometric measurements of the cranium in patients with Chiari type I malformation and comparison with the normal population. Acta Neurochir. 2002;144(2):165-171Pl.

    Article  CAS  PubMed  Google Scholar 

  39. Hayes AF. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. 2nd ed. New York: Guilford; 2018.

  40. Shaffer JP. Multiple hypothesis testing. Annu Rev Psychol. 1995;46:561–84.

    Article  Google Scholar 

  41. Gholampour S, Taher M. Relationship of morphologic changes in the brain and spinal cord and disease symptoms with cerebrospinal fluid hydrodynamic changes in patients with Chiari malformation type I. World Neurosurgery. 2018;116:E830–9.

    Article  PubMed  Google Scholar 

  42. Gholampour S and Gholampour H. Correlation of a new hydrodynamic index with other effective indexes in Chiari I malformation patients with different associations. Scientific Reports, 2020; 10:15907.

  43. Shaffer N, et al. Cerebrospinal fluid flow impedance is elevated in Type I Chiari malformation. J Biomech Eng. 2014;136(2):021012.

    Article  PubMed  Google Scholar 

  44. Kumar M, et al. Correlation of diffusion tensor imaging metrics with neurocognitive function in Chiari I malformation. World Neurosurg. 2011;76(1–2):189–94.

    Article  PubMed  Google Scholar 

  45. Houston JR, et al. An electrophysiological study of cognitive and emotion processing in type I Chiari malformation. Cerebellum. 2018;17(4):404–18.

    Article  CAS  PubMed  Google Scholar 

  46. Hoche F, et al. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141(1):248–70.

    Article  PubMed  Google Scholar 

  47. Lautenbacher S, et al. Age changes in pain perception: a systematic-review and meta-analysis of age effects on pain and tolerance thresholds. Neurosci Biobehav Rev. 2017;75:104–13.

    Article  PubMed  Google Scholar 

  48. Molton IR, Terrill AL. Overview of persistent pain in older adults. Am Psychol. 2014;69(2):197–207.

    Article  PubMed  Google Scholar 

  49. Goel A, et al. Chiari 1 formation redefined-clinical and radiographic observations in 388 surgically treated patients. World Neurosurg. 2020;141:e921–34.

    Article  PubMed  Google Scholar 

  50. Schaeren S, Jeanneret B. Atlantoaxial osteoarthritis: case series and review of the literature. Eur Spine J. 2005;14:501–6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lin WS, et al. Association between cervical spondylosis and migraine: a nationwide retrospective cohort study. Int J Environ Res Public Health 2018; 15:587. https://doi.org/10.3390/ijerph15040587.

  52. McElroy A, Rashmir A, Manfredi J, Sledge D, Carr E, Stopa E, Klinge P. Evaluation of the structure of Myodural bridges in an Equine Model of Ehlers-Danlos syndromes. Sci Rep. 2019;9:9978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Enix DE, Scali F, Pontell ME. The cervical myodural bridge, a review of literature and clinical implications. J Can Chiropr Assoc. 2014;58(2):184–92.

    PubMed  PubMed Central  Google Scholar 

  54. Uftring SJ, Chu D, Alperin N, Levin DN. The mechanical state of intracranial tissues in elderly subjects studied by imaging CSF and brain pulsations. Magn Reson Imaging. 2000;18:991–6.

    Article  CAS  PubMed  Google Scholar 

  55. Krishna V, et al. Diffusion tensor imaging assessment of microstructural brainstem integrity in Chiari malformation Type I. J Neurosurg. 2016;125(5):1112–9.

    Article  PubMed  Google Scholar 

Download references

Funding

Maitane Garcia participated in the present project as a Visiting Scholar at the University of Akron in the Summer of 2019. Her participation in this research project was funded by a grant from the Department of Education of the Basque Government. This research was also funded by a grant from Conquer Chiari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. Allen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, M., Eppelheimer, M.S., Houston, J.R. et al. Adult Age Differences in Self-Reported Pain and Anterior CSF Space in Chiari Malformation. Cerebellum 21, 194–207 (2022). https://doi.org/10.1007/s12311-021-01289-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01289-w

Keywords

Navigation