Skip to main content
Log in

An Electrophysiological Study of Cognitive and Emotion Processing in Type I Chiari Malformation

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Type I Chiari malformation (CMI) is a neurological condition in which the cerebellar tonsils descend into the cervical spinal subarachnoid space resulting in cervico-medullary compression. Early case-control investigations have indicated cognitive deficits in the areas of attention, memory, processing speed, and visuospatial function. The present study further examined cognitive and emotional processing deficits associated with CMI using a dual-task paradigm. Nineteen CMI patients were recruited during pre-surgical consultation and 19 matched control participants identified emotional expressions in separate single and asynchronous dual-task designs. To extend earlier behavioral studies of cognitive effects in CMI, we recorded event-related potentials (ERPs) in the dual-task design. Though response times were slower for CMI patients across the two tasks, behavioral and ERP analyses indicated that patients did not differ from matched controls in the ability to allocate attentional resources between the two tasks. P1 ERP component analyses provided no indication of an emotional arousal deficit in our CMI sample while P3 ERP component analyses suggested a CMI-related deficit in emotional regulation. P3 analysis also yielded evidence for a frontalization of neurophysiological activity in CMI patients. Pain and related depression and anxiety factors accounted for CMI deficits in single-task, but not dual-task, response times. Results are consistent with a dysfunctional fronto-parietal attentional network resulting from either the indirect effects of chronic pain or the direct effects of CMI pathophysiology stemming from cervico-medullary compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen PA, Delahanty D, Kaut KP, Li X, Garcia M, Houston JR, et al. Chiari 1000 Registry Project: assessment of surgical outcome on self-focused attention, pain and delayed recall. Psychol Med. 2017. https://doi.org/10.1017/S0033291717003117.

    Article  PubMed  Google Scholar 

  2. Allen, P. A., Houston, J. R., Pollock, J. W., Buzzelli, C., Li, X., Harrington, A. K., … Luciano, M. G. (2014) Task-specific and general cognitive effects in Chiari malformation type I. PLoS One, 9(4), e94844, DOI: https://doi.org/10.1371/journal.pone.0094844.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Apkarian AV, et al. Chronic pain patients are impaired on an emotional decision-making task. Pain. 2004;108(1–2):129–36. https://doi.org/10.1016/j.pain.2003.12.015.

    Article  PubMed  Google Scholar 

  4. Attridge N, Noonan D, Eccleston C, Keogh E. The disruptive effects of pain on n-back task performance in a large general population sample. Pain. 2015;156(10):1885–91. https://doi.org/10.1097/j.pain.0000000000000245.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Batty M, Taylor MJ. Early processing of the six basic facial emotional expressions. Cogn Brain Res. 2003;17(3):613–20. https://doi.org/10.1016/S0926-6410(03)00174-5.

    Article  Google Scholar 

  6. Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition. 1994;50(1):7–15. https://doi.org/10.1016/0010-0277(94)90018-3.

    Article  CAS  PubMed  Google Scholar 

  7. Benjamin Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29(4):1165–88.

    Article  Google Scholar 

  8. Berryman C, Stanton TR, Bowering KJ, Tabor A, McFarlane A, Moseley GL. Do people with chronic pain have impaired executive function? A meta-analytical review. Clin Psychol Rev. 2014;34(7):563–79. https://doi.org/10.1016/j.cpr.2014.08.003.

    Article  PubMed  Google Scholar 

  9. Bushnell MC, Čeko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 2013;14(7):502–11. https://doi.org/10.1038/nrn3516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cappell KA, Gmeindl L, Reuter-Lorenz PA. Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex. 2010;46(4):462–73. https://doi.org/10.1016/j.cortex.2009.11.009.

    Article  PubMed  Google Scholar 

  11. Carrier LM, Pashler H. Attentional limits in memory retrieval. J Exp Psychol: Learn Mem Cognit. 1995;21(5):1339–48.

    CAS  Google Scholar 

  12. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15. https://doi.org/10.1038/nrn755.

    Article  CAS  PubMed  Google Scholar 

  13. Dehaene S, Changeux J-P. Experimental and theoretical approaches to conscious processing. Neuron. 2011;70(2):200–27. https://doi.org/10.1016/j.neuron.2011.03.018.

    Article  CAS  PubMed  Google Scholar 

  14. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Method. 2004;134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009.

    Article  Google Scholar 

  15. Doberstein CA, Torabi R, Klinge PM. Current concepts in the pathogenesis, diagnosis, and management of Type I Chiari malformations. Rhode Island Med J: Recent Adv Neurosurg. 2017;100:47–9.

    Google Scholar 

  16. Eason RG, Harter R. Effects of attention and arousal on visually evoked cortical potentials and reaction time in man. Physiol Behav. 1969;4(3):283–9. https://doi.org/10.1016/0031-9384(69)90176-0.

    Article  Google Scholar 

  17. Eimer M, Holmes A. Event-related brain potential correlates of emotional face processing. Neuropsychologia. 2007;45(1):15–31. https://doi.org/10.1016/j.neuropsychologia.2006.04.022.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fischbein R, Saling JR, Marty P, Kropp D, Meeker J, Amerine J, et al. Patient-reported Chiari malformation type I symptoms and diagnostic experiences: a report from the national Conquer Chiari Patient Registry database. Neurol Sci. 2015;36(9):1617–24. https://doi.org/10.1007/s10072-015-2219-9.

    Article  PubMed  Google Scholar 

  19. Furuya K, Sano K, Segawa H, Ide K, Yoneyama H. Symptomatic tonsillar ectopia. J Neurol Neurosurg Psychiatry. 1998;64(2):221–6. https://doi.org/10.1136/jnnp.64.2.221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Henry JD, Crawford JR. The short-form version of the Depression Anxiety Stress Scales (DASS-21): construct validity and normative data in a large non-clinical sample. Br J Clin Psychol. 2005;44(2):227–39. https://doi.org/10.1348/014466505X29657.

    Article  PubMed  Google Scholar 

  21. Herweh C, Akbar M, Wengenroth M, Blatow M, Mair-Walther J, Rehbein N, et al. DTI of commissural fibers in patients with Chiari II-malformation. NeuroImage. 2009;44(2):306–11. https://doi.org/10.1016/j.neuroimage.2008.09.006.

    Article  CAS  PubMed  Google Scholar 

  22. Hess LE, Haimovici A, Munoz MA, Montoya P. Beyond pain: modeling decision-making deficits in chronic pain. Front Behav Neurosci. 2014;8:263–3.

  23. Hesselmann G, Flandin G, Dehaene S. Probing the cortical network underlying the psychological refractory period: a combined EEG-fMRI study. Neuro Image. 2011;56(3):1608–21. https://doi.org/10.1016/j.neuroimage.2011.03.017.

    Article  CAS  PubMed  Google Scholar 

  24. Houston JR, Eppelheimer MS, Pahlavian SH, Biswas D, Urbizu A, Martin BA, et al. A morphometric assessment of type I Chiari malformation above the McRae line: a retrospective case-control study in 302 adult female subjects. J Neuroradiol. 2017. https://doi.org/10.1016/j.neurad.2017.06.006.

    Article  PubMed  Google Scholar 

  25. Houston, J.R., Pollock, J.W., Lien, M-C, & Allen, P.A. (in press-b [B]). Emotional arousal deficit or emotional regulation bias? An electrophysiological study of age-related differences in emotion perception. Experimental Aging Research.

  26. Jolicoeur P. Modulation of the attentional blink by on-line response selection: evidence from speeded and unspeeded task1 decisions. Mem Cogn. 1998;26(5):1014–32. https://doi.org/10.3758/BF03201180.

    Article  CAS  Google Scholar 

  27. Krolak-Salmon P, Fischer C, Vighetto A, Mauguière F. Processing of facial emotional expression: spatio-temporal data as assessed by scalp event-related potentials. Eur J Neurosci. 2001;13(5):987–94. https://doi.org/10.1046/j.0953-816x.2001.01454.x.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar M, Rathore RK, Srivastava A, Yadav SK, Behari S, Gupta RK. Correlation of diffusion tensor imaging metrics with neurocognitive function in Chiari I malformation. World Neurosurg. 2011;76(1–2):189–94. https://doi.org/10.1016/j.wneu.2011.02.022.

    Article  PubMed  Google Scholar 

  29. Lien M-C, Allen PA, Crawford C. Electrophysiological evidence of different loci for case-mixing and word frequency effects in visual word recognition. Psychon Bull Rev. 2012;19(4):677–84. https://doi.org/10.3758/s13423-012-0251-9.

    Article  PubMed  Google Scholar 

  30. Lien M-C, Proctor RW, Allen PA. Ideomotor compatibility in the psychological refractory period effect: 29 years of oversimplification. J Exp Psychol Human Percept Perform. 2002;28(2):396–409. https://doi.org/10.1037/0096-1523.28.2.396.

    Article  Google Scholar 

  31. Lien M-C, Ruthruff E, Cornett L, Goodin Z, Allen PA. On the nonautomaticity of visual word processing: electrophysiological evidence that word processing requires central attention. J Exp Psychol Hum Percept Perform. 2008;34(3):751–73. https://doi.org/10.1037/0096-1523.34.3.751.

    Article  PubMed  Google Scholar 

  32. Lopez-Calderon J, Luck SJ. ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front Hum Neurosci. 2014;8 https://doi.org/10.3389/fnhum.2014.00213.

  33. Manto M, Mariën P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015;2(2):1–5.

    Google Scholar 

  34. Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11(2):457–87. https://doi.org/10.1007/s12311-011-0331-9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Meadows J, Kraut M, Guarnieri M, Haroun RI, Carson BS. Asymptomatic Chiari type I malformations identified on magnetic resonance imaging. J Neurosurg. 2000;92(6):920–6. https://doi.org/10.3171/jns.2000.92.6.0920.

    Article  CAS  PubMed  Google Scholar 

  36. Melzack R. The short-form McGill Pain Questionnaire. Pain. 1987;30(2):191–7. https://doi.org/10.1016/0304-3959(87)91074-8.

    Article  CAS  PubMed  Google Scholar 

  37. Milhorat TH, Chou MW, Trinidad EM, Kula RW, Mandell M, Wolpert C, et al. Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery. 1999;44(5):1005–17. https://doi.org/10.1097/00006123-199905000-00042.

    Article  CAS  PubMed  Google Scholar 

  38. Moriarty O, Finn DP. Cognition and pain. Curr Opin Support Palliat Care. 2014;8(2):130–6. https://doi.org/10.1097/SPC.0000000000000054.

    Article  PubMed  Google Scholar 

  39. Moriarty O, McGuire BE, Finn DP. The effect of pain on cognitive function: a review of clinical and preclinical research. Prog Neurobiol. 2011;93(3):385–404. https://doi.org/10.1016/j.pneurobio.2011.01.002.

    Article  PubMed  Google Scholar 

  40. Olejnik S, Algina J. Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychol Methods. 2003;8(4):434–47. https://doi.org/10.1037/1082-989X.8.4.434.

    Article  PubMed  Google Scholar 

  41. Pashler H. Processing stages in overlapping tasks: evidence for a central bottleneck. J Exp Psychol. 1984;10(3):358–77.

    CAS  Google Scholar 

  42. Pashler H. Dual-task interference in simple tasks: data and theory. Psychol Bull. 1994;116(2):220–44. https://doi.org/10.1037/0033-2909.116.2.220.

    Article  CAS  PubMed  Google Scholar 

  43. Pessoa L, Kastner S, Ungerleider LG. Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J Neurosci. 2003;23(10):3990–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Polich J. Meta-analysis of P300 normative aging studies. Psychophysiology. 1996;33(4):334–53. https://doi.org/10.1111/j.1469-8986.1996.tb01058.x.

    Article  CAS  PubMed  Google Scholar 

  45. Pollock JW, Khoja N, Kaut KP, Lien M-C, Allen PA. Electrophysiological evidence for adult age-related sparing and decrements in emotion perception and attention. Front Integr Neurosci. 2012;6 https://doi.org/10.3389/fnint.2012.00060.

  46. Pourtois G, Thut G, Grave de Peralta R, Michel C, Vuilleumier P. Two electrophysiological stages of spatial orienting towards fearful faces: early temporo-parietal activation preceding gain control in extrastriate visual cortex. Neuro Image. 2005;26(1):149–63. https://doi.org/10.1016/j.neuroimage.2005.01.015.

    Article  PubMed  Google Scholar 

  47. Pourtois G, Schettino A, Vuilleumier P. Brain mechanisms for emotional influences on perception and attention: what is magic and what is not. Biol Psychol. 2013;92(3):492–512. https://doi.org/10.1016/j.biopsycho.2012.02.007.

    Article  PubMed  Google Scholar 

  48. Rellecke J, Palazova M, Sommer W, Schacht A. On the automaticity of emotion processing in words and faces: event-related brain potentials evidence from a superficial task. Brain Cogn. 2011;77(1):23–32. https://doi.org/10.1016/j.bandc.2011.07.001.

    Article  PubMed  Google Scholar 

  49. Rellecke J, Sommer W, Schacht A. Does processing of emotional facial expressions depend on intention? Time-resolved evidence from event-related brain potential. Biol Psychol. 2012;90(1):23–32. https://doi.org/10.1016/j.biopsycho.2012.02.002.

    Article  PubMed  Google Scholar 

  50. Reuter-Lorenz PA, Cappell KA. Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci. 2008;17(3):177–82. https://doi.org/10.1111/j.1467-8721.2008.00570.x.

    Article  Google Scholar 

  51. Rotshtein P, Richardson MP, Winston JS, Kiebel SJ, Vuilleumier P, Eimer M, et al. Amygdala damage affects event-related potentials for fearful faces at specific time windows. Hum Brain Mapp. 2010;31(7):1089–105. https://doi.org/10.1002/hbm.20921.

    Article  PubMed Central  Google Scholar 

  52. Ruthruff E, Miller J, Lachmann T. Does mental rotation require central mechanisms? J Exp Psychol Hum Percept Perform. 1995;21(3):552–70. https://doi.org/10.1037/0096-1523.21.3.552.

    Article  CAS  PubMed  Google Scholar 

  53. Schmahmann JD. An emerging concept the cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87. https://doi.org/10.1001/archneur.1991.00530230086029.

    Article  CAS  PubMed  Google Scholar 

  54. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98. https://doi.org/10.1002/(SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO;2-0.

    Article  CAS  PubMed  Google Scholar 

  55. Schmahmann JD. The cerebellar cognitive affective syndrome: clinical correlations of the dysmetria of thought hypothesis. Int Rev Psychiatry. 2001;13(4):313–22. https://doi.org/10.1080/09540260120082164.

    Article  Google Scholar 

  56. Schmahmann JD. The cerebellar cognitive affective syndrome and the neuropsychiatry of the cerebellum. Essentials of Cerebellum and Cerebellar Disorders: A Primer for Graduate Students. 2016:499–511. https://doi.org/10.1007/978-3-319-24551-5_68.

    Chapter  Google Scholar 

  57. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79. https://doi.org/10.1093/brain/121.4.561.

    Article  PubMed  Google Scholar 

  58. Schmidt M. Rey auditory verbal learning test: A handbook (p. 1996). Los Angeles, CA: Western Psychological Services; 1996.

    Google Scholar 

  59. Sekula RFJ, Jannetta PJ, Casey KF, Marchan EM, Sekula LK, McCrady CS. Dimensions of the posterior fossa in patients symptomatic for Chiari I malformation but without cerebellar tonsillar descent. Cerebrospinal Fluid Res. 2005;2(1):11. https://doi.org/10.1186/1743-8454-2-11.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shaw K, Lien M-C, Ruthruff E, Allen PA. Electrophysiological evidence of emotion perception without central attention. J Cogn Psychol. 2011;23(6):695–708. https://doi.org/10.1080/20445911.2011.586624.

    Article  Google Scholar 

  61. Smith BW, Strahle J, Bapuraj JR, Muraszko KM, Garton HJ, Maher CO. Distribution of cerebellar tonsil position: implications for understanding Chiari malformation. J Neurosurg. 2013;119(3):812–9. https://doi.org/10.3171/2013.5.JNS121825.

    Article  PubMed  Google Scholar 

  62. Tamburin S, Maier A, Schiff S, Lauriola MF, Di Rosa E, Zanette G, et al. Cognition and emotional decision-making in chronic low back pain: an ERPs study during Iowa gambling task. Front Psychol. 2014;5:1350–0.

  63. van der Leeuw, G., Eggermont, L. H., Shi, L., Milberg, W. P., Gross, A. L., Hausdorff, J. M., … Leveille, S. G. (2016). Pain and cognitive function among older adults living in the community. J Gerontol A Biol Sci Med Sci, 71(3), 398–405, DOI: https://doi.org/10.1093/gerona/glv166.

    Article  PubMed Central  Google Scholar 

  64. Vogel EK, Luck SJ, Shapiro KL. Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. J Exp Psychol Hum Percept Perform. 1998;24(6):1656–6. https://doi.org/10.1037/0096-1523.24.6.1656.

    CAS  PubMed  Google Scholar 

  65. Vuilleumier P. How brains beware: neural mechanisms of emotional attention. Trends Cogn Sci. 2005;9(12):585–94. https://doi.org/10.1016/j.tics.2005.10.011.

    Article  PubMed  Google Scholar 

  66. Vuilleumier P, Huang Y-M. Emotional attention uncovering the mechanisms of affective biases in perception. Curr Dir Psychol Sci. 2009;18(3):148–52. https://doi.org/10.1111/j.1467-8721.2009.01626.x.

    Article  Google Scholar 

  67. Winkler I, Haufe S, Tangermann M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav Brain Funct. 2011;7(1):30. https://doi.org/10.1186/1744-9081-7-30.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wood S, Kisley MA. The negativity bias is eliminated in older adults: age-related reduction in event-related brain potentials associated with evaluative categorization. Psychol Aging. 2006;21(4):815–20. https://doi.org/10.1037/0882-7974.21.4.815.

    Article  PubMed  Google Scholar 

  69. Zhou S, Despres O, Pebayle T, Dufour A. Age-related decline in cognitive pain modulation induced by distraction: evidence from event-related potentials. J Pain. 2015;16(9):862–72. https://doi.org/10.1016/j.jpain.2015.05.012.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Houston.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houston, J.R., Hughes, M.L., Lien, MC. et al. An Electrophysiological Study of Cognitive and Emotion Processing in Type I Chiari Malformation. Cerebellum 17, 404–418 (2018). https://doi.org/10.1007/s12311-018-0923-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0923-8

Keywords

Navigation