Skip to main content
Log in

High Hypnotizability Impairs the Cerebellar Control of Pain

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In the general population, transcranial anodal direct current stimulation of the cerebellum (ctDCS) reduces pain intensity and the amplitude of nociceptive laser evoked potentials (LEPs), whereas cathodal ctDCS elicits opposite effects. Since behavioral findings suggest that the cerebellar activity of highly hypnotizable individuals (highs) differs from the general population, we investigated whether hypnotizability-related differences occur in the modulation of pain by ctDCS. Sixteen healthy highs (according to the Stanford Hypnotic Susceptibility Scale, form A) and 16 participants not selected according to hypnotizability (controls) volunteered to undergo laser nociceptive stimulation of the dorsum of the left hand before and after anodal or cathodal ctDCS. LEPs amplitudes and latencies and the subjective pain experience (Numerical Rating Scale) were analyzed. Smaller LEP amplitudes and longer latencies were observed in highs with respect to controls independently of stimulation. After anodal and cathodal cerebellar stimulation, controls reported lower and higher pain than before it, respectively. In contrast, highs did not report significant changes in the perceived pain after both stimulations. They increased significantly their N2/P2 amplitude after anodal ctDCS and did not exhibit any significant change after cathodal tDCS, whereas controls decreased the N1 and N2P2 amplitude and increased their latency after anodal cerebellar stimulation and did the opposite after cathodal ctDCS. In conclusion, the study showed impaired cerebellar pain modulation and suggested altered cerebral cortical representation of pain in subjects with high hypnotizability scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Duerden EG, Albanese MC. Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp. 2013;34(1):109–49.

    Article  PubMed  Google Scholar 

  2. Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (ctDCS): motor control, cognition, learning and emotions. Neuroimage. 2014;85(Pt 3):918–23.

    Article  PubMed  Google Scholar 

  3. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Ann Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  5. Bocci T, Santarcangelo EL, Vannini B, Torzini A, Carli G, Ferrucci R, et al. Cerebellar direct current stimulation modulates pain perception in humans. Rest Neurol Neurosci. 2015;33(5):597–609.

    Google Scholar 

  6. Bradnam LV, Graetz LJ, McDonnell MN, Ridding M. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci. 2015;9:286.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ruscheweyh R, Kuhnel M, Filippopulos F, Blum B, Eggert T, Straube A. Altered experimental pain perception after cerebellar infarction. Pain. 2015;155(7):1303–12.

    Article  Google Scholar 

  8. Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci. 2015;9:181.

    PubMed  PubMed Central  Google Scholar 

  9. Benwell CS, Learmonth G, Miniussi C, Harvey M, Thut G. Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: evidence from biparietal tDCS influence on lateralized attention bias. Cortex. 2015;69:152–65.

    Article  PubMed  Google Scholar 

  10. Elkins GR, Barabasz AF, Council JR, Spiegel D. Advancing research and practice: the revised APA division 30 definition of hypnosis. Am J Clin Hypn. 2015;57(4):378–85.

    Article  PubMed  Google Scholar 

  11. Green JP, Barabasz AF, Barrett D, Montgomery GH. Forging ahead: the 2003 APA division 30 definition of hypnosis. Int J Clin Exp Hypn. 2005;53:259–64.

    Article  PubMed  Google Scholar 

  12. Santarcangelo EL. New views of hypnotizability. Front Behav Neurosci. 2014;8:224.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Menzocchi M, Mecacci G, Zeppi A, Carli G, Santarcangelo EL. Hypnotizability and performance on a prism adaptation test. Cerebellum. 2015;14(6):699–706.

    Article  PubMed  Google Scholar 

  14. Santarcangelo EL, Scattina E, Carli G, Macerata A, Manzoni D. Hypnotizability-dependent modulation of postural control: effects of alteration of the visual and leg proprioceptive inputs. Exp Brain Res. 2008;191(3):331–40.

    Article  PubMed  Google Scholar 

  15. Santarcangelo EL, Scattina E, Orsini P, Bruschini L, Ghelarducci B, Manzoni D. Effects of vestibular and neck proprioceptive stimulation on posture as a function of hypnotizability. Int J Clin Exp Hypn. 2008;56(2):170–84.

    Article  PubMed  Google Scholar 

  16. Di Gruttola F, Orsini P, Carboncini MC, Rossi B, Santarcangelo EL. Revisiting the association between hypnotisability and blink rate. Exp Brain Res. 2014;232(12):3763–69.

    Article  PubMed  Google Scholar 

  17. Balthazard GC, Woody EZ. Bimodality, dimensionality, and the notion of hypnotic types. Int J Clin Exp Hypn. 1989;37:70–89.

    Article  CAS  PubMed  Google Scholar 

  18. Carvalho C, Kirsch I, Mazzoni G, Leal I. Portuguese norms for the Waterloo-Stanford Group C (WSGC) Scale of Hypnotic susceptibility. Int J Clin Exp Hypn. 2008;56:295–305.

    Article  PubMed  Google Scholar 

  19. De Pascalis V, Bellusci A, Russo PM. Italian norms for the Stanford Hypnotic susceptibility scale, form C. Int J Clin Exp Hypn. 2000;48:315–33.

    Article  PubMed  Google Scholar 

  20. Weitzenhoffer AM, Hilgard ER. Stanford Hypnotic Susceptibility Scale, form A and B. Palo Alto: Consulting Psychologist Press; 1959.

    Google Scholar 

  21. Balthazard CG, Woody EZ. Bimodality, dimensionality, and the notion of hypnotic types. Int J Clin Exp Hypn. 1989;37(1):70–89.

    Article  CAS  PubMed  Google Scholar 

  22. Agostino R, Cruccu G, Iannetti G, Romaniello A, Truini A, Manfredi M. Topographical distribution of pinprick and warmth thresholds to CO2 laser stimulation on the human skin. Neurosci Lett. 2000;285(2):115–8.

    Article  CAS  PubMed  Google Scholar 

  23. Cruccu G, Romaniello A, Amantini A, Lombardi M, Innocenti P, Manfredi M. Assessment of trigeminal small-fiber function: brain and reflex responses evoked by CO2-laser stimulation. Muscle Nerve. 1999;22(4):508–16.

    Article  CAS  PubMed  Google Scholar 

  24. Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation—a consensus paper. Cerebellum. 2014;13(1):121–38.

    Article  CAS  PubMed  Google Scholar 

  25. Truini A, Galeotti F, Romaniello A, Virtuoso M, Iannetti GD, Cruccu G. Laser-evoked potentials: normative values. Clin Neurophysiol. 2005;116(4):821–26.

    Article  CAS  PubMed  Google Scholar 

  26. Truini A, Panuccio G, Galeotti F, Maluccio MR, Sartucci F, Avoli M, et al. Laser-evoked potentials as a tool for assessing the efficacy of antinociceptive drugs. Eur J Pain. 2010;14(2):222–25.

    Article  CAS  PubMed  Google Scholar 

  27. Lefaucheur JP, Brusa A, Creange A, Drouot X, Jarry G. Clinical application of laser evoked potentials using the Nd:YAG laser. Neurophysiol Clin. 2002;32(2):91–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lefaucheur JP, Debray S, Jarry G. Laser evoked potentials using the Nd:YAG laser. Muscle Nerve. 2001;24(4):496–501.

    Article  CAS  PubMed  Google Scholar 

  29. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arrigo A, Mormina E, Anastasi GP, Gaeta M, Calamuneri A, Quartarone A, et al. Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebello-limbic pathway. Front Hum Neurosci. 2014;8:987.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Valeriani M, Le Pera D, Restuccia D, de Armas L, Miliucci R, Betti V, et al. Parallel spinal pathways generate the middle-latency N1 and the late P2 components of the laser evoked potentials. Clin Neurophysiol. 2007;118(5):1097–104.

    Article  PubMed  Google Scholar 

  32. Wilson PH, Ruddock S, Smits-Engelsman B, Polatajko H, Blank R. Understanding performance deficits in developmental coordination disorder: a meta-analysis of recent research. Dev Med Child Neurol. 2013;55(3):217–28.

    Article  PubMed  Google Scholar 

  33. Cantin N, Polatajko HJ, Thach WT, Jaglal S. Developmental coordination disorder: exploration of a cerebellar hypothesis. Hum Mov Sci. 2007;26(3):491–509.

    Article  PubMed  Google Scholar 

  34. Jambrik Z, Santarcangelo EL, Ghelarducci B, Picano E, Sebastiani L. Does hypnotizability modulate the stress-related endothelial dysfunction? Brain Res Bull. 2004;63(3):213–6.

    Article  PubMed  Google Scholar 

  35. Jambrik Z, Santarcangelo EL, Rudisch T, Varga A, Forster T, Carli G. Modulation of pain-induced endothelial dysfunction by hypnotisability. Pain. 2005;116(3):181–86.

    Article  PubMed  Google Scholar 

  36. Contestabile A. Role of nitric oxide in cerebellar development and function: focus on granule neurons. Cerebellum. 2012;11(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  37. Wang DJ, Su LD, Wang YN, Yang D, Sun CL, Zhou L, et al. Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. J Neurosci. 2014;34(6):2355–64.

    Article  CAS  PubMed  Google Scholar 

  38. Del Percio C, Triggiani AI, Marzano N, De Rosas M, Valenzano A, Petito A, et al. Subjects’ hypnotizability level affects somatosensory evoked potentials to non-painful and painful stimuli. Clin Neurophysiol. 2013;124(7):1448–55.

    Article  PubMed  Google Scholar 

  39. De Pascalis V, Cacace I, Massicolle F. Focused analgesia in waking and hypnosis: effects on pain, memory, and somatosensory event-related potentials. Pain. 2008;134(1–2):197–208.

    Article  PubMed  Google Scholar 

  40. De Pascalis V, Varriale V, Cacace I. Pain modulation in waking and hypnosis in women: event-related potentials and sources of cortical activity. PLoS ONE. 2015;10(6), e0128474.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Valentini E, Betti V, Hu L, Aglioti SM. Hypnotic modulation of pain perception and of brain activity triggered by nociceptive laser stimuli. Cortex. 2013;49(2):446–62.

    Article  PubMed  Google Scholar 

  42. Madeo D, Castellani E, Mocenni C, Santarcangelo EL. Pain perception and EEG dynamics: does hypnotizability account for the efficacy of the suggestions of analgesia? Physiol Behav. 2015;145:57–63.

    Article  PubMed  Google Scholar 

  43. Santarcangelo EL, Varanini M, Paoletti G, Castellani E, Palombo C, Carli G. Pain-inducing imagery as a function of hypnotisability and of the activity of Gray’s behavioral inhibition/activation systems. Neurosci Lett. 2013;557(Pt B):184–87.

    Article  CAS  PubMed  Google Scholar 

  44. Barabasz A, Barabasz M, Jensen S, Calvin S, Trevisan M, Warner D. Cortical event related potentials show the structure of hypnotic suggestions is crucial. Int J Clin Exp Hypn. 1999;47:5–22.

    Article  CAS  PubMed  Google Scholar 

  45. Crawford HJ, Corby JC, Kopell BS. Auditory event-related potentials while ignoring tone stimuli: attentional differences reflected in stimulus intensity and latency responses in low and highly hypnotizable persons. Int J Neurosci. 1996;85:57–69.

    Article  CAS  PubMed  Google Scholar 

  46. Gruzelier J, Gray M, Horn P. The involvement of frontally modulated attention in hypnosis and hypnotic susceptibility: cortical evoked potential evidence. Contemp Hypn. 2002;19:179–89.

    Article  Google Scholar 

  47. Jensen SM, Barabasz A, Barabasz M, Warner D. EEG P300 event-related markers of hypnosis. Am J Clin Hypn. 2001;44:127–39.

    Article  CAS  PubMed  Google Scholar 

  48. Picazio S, Granata C, Caltagirone C, Petrosini L, Oliveri M. Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening. Front Hum Neurosci. 2015;9:158.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Spiegel D, Cutcomb S, Ren C, Pribram K. Hypnotic hallucination alters evoked potentials. J Abnorm Psychol. 1985;94:249–55.

    Article  CAS  PubMed  Google Scholar 

  50. Barabasz AF, Lonsdale C. Effects of hypnosis on P300 olfactory-evoked potential amplitudes. J Abnorm Psychol. 1983;92:520–23.

    Article  CAS  PubMed  Google Scholar 

  51. Spiegel D, Barabasz AF. Effects of hypnotic instructions on P300 event-related potential amplitudes: research and clinical implications. Am J Clin Hypn. 1988;31:11–7.

    Article  CAS  PubMed  Google Scholar 

  52. Foti F, Mandolesi L, Cutuli D, Laricchiuta D, De Bartolo P, Gelfo F, et al. Cerebellar damage loosens the strategic use of the spatial structure of the search space. Cerebellum. 2010;9(1):29–41.

    Article  PubMed  Google Scholar 

  53. Silveri MC, Misciagna S, Terrezza G. Right side neglect in right cerebellar lesion. J Neurol Neurosurg Psychiatry. 2001;71(1):114–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the participation of all subjects and the excellent technical assistance of C. Orsini. The paper was supported in part by the Italian operating and development MIUR PRIN grant, no. 2006062332 002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica L. Santarcangelo.

Ethics declarations

Conflicts of Interest

Authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocci, T., Barloscio, D., Parenti, L. et al. High Hypnotizability Impairs the Cerebellar Control of Pain. Cerebellum 16, 55–61 (2017). https://doi.org/10.1007/s12311-016-0764-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0764-2

Keywords

Navigation