Skip to main content
Log in

Transplantation of Embryonic Cerebellar Grafts Improves Gait Parameters in Ataxic Lurcher Mice

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Hereditary cerebellar ataxias are severe diseases for which therapy is currently not sufficiently effective. One of the possible therapeutic approaches could be neurotransplantation. Lurcher mutant mice are a natural model of olivocerebellar degeneration representing a tool to investigate its pathogenesis as well as experimental therapies for hereditary cerebellar ataxias. The effect of intracerebellar transplantation of embryonic cerebellar solid tissue or cell suspension on motor performance in adult Lurcher mutant and healthy wild-type mice was studied. Brain-derived neurotrophic factor level was measured in the graft and adult cerebellar tissue. Gait analysis and rotarod, horizontal wire, and wooden beam tests were carried out 2 or 6 months after the transplantation. Higher level of the brain-derived neurotrophic factor was found in the Lurcher cerebellum than in the embryonic and adult wild-type tissue. A mild improvement of gait parameters was found in graft-treated Lurcher mice. The effect was more marked in cell suspension grafts than in solid transplants and after the longer period than after the short one. Lurcher mice treated with cell suspension and examined 6 months later had a longer hind paw stride (4.11 vs. 3.73 mm, P < 0.05) and higher swing speed for both forepaws (52.46 vs. 32.79 cm/s, P < 0.01) and hind paws (63.46 vs. 43.67 cm/s, P < 0.001) than controls. On the other hand, classical motor tests were not capable of detecting clearly the change in the motor performance. No strong long-lasting negative effect of the transplantation was seen in wild-type mice, suggesting that the treatment has no harmful impact on the healthy cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4:2–6.

    Article  CAS  PubMed  Google Scholar 

  2. Marien P, Beaton A. The enigmatic linguistic cerebellum: clinical relevance and unanswered questions on nonmotor speech and language deficits in cerebellar disorders. Cerebellum Ataxias. 2014;1:12.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Wang HL, Hu SH, Chou AH, Wang SS, Weng YH, Yeh TH. H1152 promotes the degradation of polyglutamine-expanded ataxin-3 or ataxin-7 independently of its ROCK-inhibiting effect and ameliorates mutant ataxin-3-induced neurodegeneration in the SCA3 transgenic mouse. Neuropharmacology. 2013;70:1–11.

    Article  PubMed  Google Scholar 

  4. Chort A, Alves S, Marinello M, Dufresnois B, Dornbierer JG, Tesson C, et al. Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice. Brain. 2013;136:1732–45.

    Article  PubMed  Google Scholar 

  5. Power EM, Empson RM. Functional contributions of glutamate transporters at the parallel fibre to Purkinje neuron synapse-relevance for the progression of cerebellar ataxia. Cerebellum Ataxias. 2014;1:3.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Manto M, Marmolino D. Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. Cerebellum. 2009;8:137–54.

    Article  PubMed  Google Scholar 

  7. Cendelin J. From mice to men: lessons from mutant ataxic mice. Cerebellum Ataxias. 2014;1:4.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Phillips RJS. ‘Lurcher’, a new gene in linkage group XI of the house mouse. J Genet. 1960;57:35–42.

    Article  Google Scholar 

  9. Zuo J, DeJager PJ, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in δ2 glutamate receptor. Nature. 1997;388:769–73.

    Article  CAS  PubMed  Google Scholar 

  10. Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M. Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun. 1993;197:1267–76.

    Article  CAS  PubMed  Google Scholar 

  11. Hills LB, Masri A, Konno K, Kakegawa W, Lam ATN, Lim-Melia E, et al. Deletions in GRID2 lead to a recessive syndrome of cerebellar ataxia and tonic upgaze in humans. Neurology. 2013;81:1378–86.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Caddy KWT, Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc B-Biol Sci. 1979;287:167–201.

    Article  CAS  Google Scholar 

  13. Wetts R, Herrup K. Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice I Qualitative studies. J Embryol Exp Morphol. 1982;68:87–98.

    CAS  PubMed  Google Scholar 

  14. Wetts R, Herrup K. Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II. Granule cell death. Brain Res. 1982;250:358–62.

    Article  CAS  PubMed  Google Scholar 

  15. Zanjani SH, Selimi F, Vogel MW, Haeberle AM, Boeuf J, Mariani J, et al. Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/+;Bax−/−. J Comp Neurol. 2006;497:622–35.

    Article  PubMed  Google Scholar 

  16. Fortier PA, Smith AM, Rossignol S. Locomotor deficits in the cerebellar mutant mouse, Lurcher. Exp Brain Res. 1987;66:271–86.

    Article  CAS  PubMed  Google Scholar 

  17. Lalonde R, Filali M, Bensoula AN, Lestienne F. Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem. 1996;65:113–20.

    Article  CAS  PubMed  Google Scholar 

  18. Hilber P, Caston J. Motor skills and motor learning in Lurcher mutant mice during aging. Neuroscience. 2001;102:615–23.

    Article  CAS  PubMed  Google Scholar 

  19. Porras-Garcia E, Cendelin J, Dominguez-del-Toro E, Vozeh F, Delgado-Garcia JM. Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur J Neurosci. 2005;21:979–88.

    Article  PubMed  Google Scholar 

  20. Cendelin J, Voller J, Vozeh F. Ataxic gait analysis in a mouse model of the olivocerebellar degeneration. Behav Brain Res. 2010;210:8–15.

    Article  PubMed  Google Scholar 

  21. Cendelin J, Tuma J, Korelusova I, Vozeh F. The effect of genetic background on behavioral manifestation of Grid2Lc mutation. Behav Brain Res. 2014;271:218–27.

    Article  CAS  PubMed  Google Scholar 

  22. Tomey DA, Heckroth JA. Transplantation of normal embryonic cerebellar cell suspensions into the cerebellum of Lurcher mutant mice. Exp Neurol. 1993;122:165–70.

    Article  CAS  PubMed  Google Scholar 

  23. Heckroth JA, Hobart NJH, Summers D. Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol. 1998;154:336–52.

    Article  CAS  PubMed  Google Scholar 

  24. Cendelin J, Babuska V, Korelusova I, Houdek Z, Vozeh F. Long-term survival of solid embryonic cerebellar grafts in Lurcher mice. Neurosci Lett. 2012;515:23–7.

    Article  CAS  PubMed  Google Scholar 

  25. Cedikova M, Houdek Z, Babuska V, Kulda V, Vozeh F, Zech N, et al. Fate of two types of cerebellar graft in wild type and cerebellar mutant mice. J Appl Biomed. 2014;12:17–23.

    Article  Google Scholar 

  26. Cendelin J, Korelusova I, Vozeh F. The effect of cerebellar transplantation and enforced physical activity on motor skills and spatial learning in adult Lurcher mutant mice. Cerebellum. 2009;8:35–45.

    Article  PubMed  Google Scholar 

  27. Cendelin J, Korelusova I, Vozeh F. A preliminary study of solid embryonic cerebellar graft survival in adult B6CBA Lurcher mutant and wild type mice. Anat Rec. 2009;292:1986–92.

    Article  Google Scholar 

  28. Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010;40:415–23.

    Article  PubMed  Google Scholar 

  29. Houdek Z, Cendelin J, Kulda V, Babuska V, Cedikova M, Kralickova M, et al. Intracerebellar application of P19-derived neuroprogenitor and naive stem cells to Lurcher mutant and wild type B6CBA mice. Med Sci Monitor. 2012;18:BR174–80.

    Article  Google Scholar 

  30. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development. 2003;130:391–9.

    Article  CAS  PubMed  Google Scholar 

  31. Pesarin F, Salmaso L. Permutation tests for complex data: theory, applications and software. 1st ed. Wiltshire: John Wiley & Sons; 2010.

    Book  Google Scholar 

  32. Triarhou LC, Zhang W, Lee WH. Graft-induced restoration of function in hereditary cerebellar ataxia. Neuroreport. 1995;6:1827–32.

    Article  CAS  PubMed  Google Scholar 

  33. Triarhou LC, Zhang W, Lee WH. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant. 1996;5:269–77.

    Article  CAS  PubMed  Google Scholar 

  34. Kaemmerer WF, Low WC. Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol. 1999;158:301–11.

    Article  CAS  PubMed  Google Scholar 

  35. Sotelo C, Alvarado-Mallart RM. Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience. 1987;20:1–22.

    Article  CAS  PubMed  Google Scholar 

  36. Keep M, Alvarado-Mallart RM, Sotelo C. New insight on the factors orienting the axonal outgrowth of grafted Purkinje cells in the pcd cerebellum. Dev Neurosci. 1992;14:153–65.

    Article  CAS  PubMed  Google Scholar 

  37. Carletti B, Williams IM, Leto K, Nakajima K, Magrassi L, Rossi F. Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol. 2008;317:147–60.

    Article  CAS  PubMed  Google Scholar 

  38. Li JX, Imitola J, Snyder EY, Sidman RL. Neural stem cells rescue nervous Purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 2006;26:7839–48.

    Article  CAS  PubMed  Google Scholar 

  39. Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H. Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum. 2014;13:323–30.

    Article  CAS  PubMed  Google Scholar 

  40. Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY, et al. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci. 2011;18:54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Purkartova Z, Tuma J, Pesta M, Kulda V, Hajkova L, Sebesta O, et al. Morphological analysis of embryonic cerebellar grafts in SCA2 mice. Neurosci Lett. 2014;558:154–8.

    Article  CAS  PubMed  Google Scholar 

  42. Rossi F, Cattaneo E. Opinion: Neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci. 2002;3:401–9.

    Article  CAS  PubMed  Google Scholar 

  43. Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, et al. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci. 2009;29:13126–35.

    Article  CAS  PubMed  Google Scholar 

  44. Bae JS, Furuya S, Ahn SJ, Yi SJ, Hirabayashi Y, Jin HK. Neuroglial activation in Niemann-Pick type C mice is suppressed by intracerebral transplantation of bone marrow-derived mesenchymal stem cells. Neurosci Lett. 2005;381:234–6.

    Article  CAS  PubMed  Google Scholar 

  45. Bae JS, Carter JE, Jin HK. Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res. 2010;340:357–69.

    Article  CAS  PubMed  Google Scholar 

  46. Sato M, Suzuki K, Nakanishi S. Expression profile of BDNF-responsive genes during cerebellar granule cell development. Biochem Biophys Res Commun. 2006;341:304–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by COST grant nos. LD 12057 and LD12056 from the Ministry of Education, Youth, and Sport of the Czech Republic, student specific research project of Charles University, Charles University Grant Agency grant no. 408911, Charles University Research Fund P36, project CZ.1.05/2.1.00/03.0076 from the European Regional Development Fund and was co-financed by the European Social Fund and the state budget of the Czech Republic project no. CZ.1.07/2.3.00/30.0022.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Cendelin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babuska, V., Houdek, Z., Tuma, J. et al. Transplantation of Embryonic Cerebellar Grafts Improves Gait Parameters in Ataxic Lurcher Mice. Cerebellum 14, 632–641 (2015). https://doi.org/10.1007/s12311-015-0656-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0656-x

Keywords

Navigation